PDF -Chapter 5: CHEMICAL STORAGE - Lehman College - Calculation Chemical Storage (Steel)
Wait Loading...


PDF :1 PDF :2 PDF :3 PDF :4 PDF :5 PDF :6 PDF :7 PDF :8 PDF :9 PDF :10


Like and share and download

Calculation Chemical Storage (Steel)

Chapter 5: CHEMICAL STORAGE - Lehman College

powderbulk enews story pdf pbe 20120321 Welded Steel Tanks for Oil Storage, ANSI AWWA D100 11 AWWA Standard for Welded Carbon Steel Tanks for Water Storage,and Underwriters Laboratories (UL) 142 Stan dard for Steel Aboveground Tanks for Flammable and Com bustible

Related PDF

Steel tanks: Basics of foundation design and material selection

powderbulk enews story pdf pbe 20120321 Welded Steel Tanks for Oil Storage, ANSI AWWA D100 11 AWWA Standard for Welded Carbon Steel Tanks for Water Storage,and Underwriters Laboratories (UL) 142 Stan dard for Steel Aboveground Tanks for Flammable and Com bustible Liquids 2 Steels with higher carbon content can require preheating and slow cooling or other special proce
PDF

MECHANICAL EXHAUST VENTILATION SYSTEMS Design, Calculations

sandiegocounty gov content dam sdc deh fhd MECHANICAL EXHAUST VENTILATION SYSTEMS Design, Calculations, and Operational Guidelines California Conference of Directors of Environmental Health I Background Proper venting and capture of the gases, heat, grease, vapors, and smoke generated by cooking equipment is important; not only for fire prevention and sanitation purposes, but
PDF

DESIGN RECOMMENDATION FOR STORAGE TANKS AND THEIR SUPPORTS

aij or jp jpn databox 2011 storagetanks2010 The Sub Committee first published “Design Recommendation for Storage Tanks and Their Supports” in 1984, and amended it in the 1990, 1996 and 2010 publications This current revised recommendation provides bulk material pressures for silos and further guidance on seismic design methods for storage tanks based on the horizontal load
PDF

DIMENSIONING STEEL STRUCTURE OF RECTANGULAR TANK ACCORDING TO

gf uns ac rs ~zbornik doc ZR28 01 pdf DIMENSIONING STEEL STRUCTURE OF RECTANGULAR TANK ACCORDING TO THE EUROCODE Miroslav T Bešević1 Nataša Mrđa2 Danijel Kukaras3 Aleksandar Prokić4 Radomir Cvijić5 UDK 624 014 2 953 DOI 10 14415 zbornikGFS28 01 Summary The main topic of the paper is dimensioning steel liquide storage tank, rectangular in shape, with three compartments
PDF

FRP Material Selection Guide - Reichhold

reichhold corrosion docs Materials Selection Chemical Storage Tanks Carbon steel, stainless steel, rubber lined steel, and premium alloys, once standard materials of construction for chemical storage tanks, are more and more being replaced by fiber reinforced plastics (FRP) as engineers begin to realize the advantages of FRP, e g increased corrosion
PDF

Page : 1 of 87 KLM Technology Group Rev: 02

klmtechgroup storage tank sizing and selection KLM Technology Group Practical Engineering Guidelines for Processing Plant Solutions STORAGE TANK SELECTION AND SIZING ENGINEERING DESIGN GUIDELINES Page 8 of 87 Rev 01 JUNE 2011 These design guideline are believed to be as accurate as possible, but are very general and not for specific design cases
PDF

Steel Tank Structures - SEANMorg

seanm resources Steel Tanks pdf The envelope of a steel tank is comprised of an assemblage of many kinds of individual steel plates, including Bottom, Annular, Shell, Knuckle, and Roof Plates Shell stiffeners – top angle and intermediate shell stiffeners
PDF

Tank Lifting and Stabilization - howtolifttanks

howtolifttanks uploads 3000337 Mix InsidepagesSmall pdf Tank Lifting and Stabilization Tank settlement and floor corrosion have presented a serious challenge in refurbishing tanks that have been in operation for several years The industry recognizes the danger of operating tanks of questionable integrity Safety and contingent liability concerns now require more attention be given to safe operation
PDF

HANDBOOK OF STORAGE TANK - FANARCO

fanarco books production Handbook of Storage Tank The Handbook of Storage Tank Systems reflects the invaluable contributions of experts in standards, manufacturing, installation, and specification of storage tank systems Each author deserves our thanks for shedding light on the best equipment and methods for storing or handling petroleum or chemicals
PDF

Chapter 5: CHEMICAL STORAGE - Lehman College


PDF

Calculation for Service Platform & Pump Shelter Structure

CODE OF PRACTICE ON SURFACE WATER DRAINAGE

fema gov media library data 20130726 1506 Sample Design Calculations This appendix presents design examples of the retrofitting techniques for elevation, dry floodproofing, wet floodproofing, and construction of a floodwall in a residential setting Examples C1 through C5 are a set of examples that illustrate the

CALCULATION OF CRANKSHAFTS diesel engine.pdf

Diesel Engine Combustion - MIT

rules dnvgl docs pdf DNV cn 2002 01 CN41 3 pdf CLASSIFICATION NOTES No 41 3 DET NORSKE VERITAS Veritasveien 1, N 1322 Hłvik, Norway Tel +47 67 57 99 00 Fax +47 67 57 99 11 CALCULATION OF CRANKSHAFTS FOR DIESEL

Calculation of Displacement, LWT and DWT

DESIGN CONCEPT METHODOLOGY DEVELOPMENT FOR LPG CARRIER

foreship files fs naterms pdf Displacement of a Panamax (approximately 90,000 GT) cruise vessel is e g ca 47,000 t Displacement Force (symbol') is Displacement Weight x g (g=9 81 m s2), and is the same as buoyancy Displacement volume ( ) The volume

Calculation of Invert Levels

Site sewer construction guide - United Utilities

Design 1) Indicate the invert elevation on profile for each pipe entering and leaving the manhole at the Solve for (b), using this formula b = (c2 − a2)1 2 Then  PROPOSED CONSTRUCTED WETLANDS – DESIGN CALCULATIONS – REV 1 0 Remarks

  1. CALCULATION SHEET
  2. Pit and Pipe Invert Levels
  3. Self-cleansing flow conditions for inverted siphons
  4. using this formula
  5. calculated by subtracting the invert level from the cover
  6. pipe invert levels shown on pit schedules and drainage longitudinal
  7. Further guidance on the estimation of the flows and loads
  8. 675mm and invert levels exceeding 6m below ground level
  9. level 1
  10. 2Difference of 9 ft3 from calculated value from rounding

Calculation of Pressure Traverse Using Beggs and Brill

Evaluation of Models to Predict Liquid Loading in Gas wells - NTNU

PDF Beggs and Brill method NMT edu nmt edu ~petro faculty Kelly BaBr pdf PDF a condensation model for calculating pressure gradients in sciencedirect science article pii md5 pid=1 PDF Pressure Gradient Prediction

  1. beggs and brill pressure drop calculation xls
  2. multiphase flow correlations
  3. pressure traverse curves pdf
  4. beggs and brill z factor correlation

Calculation Schema for Purchase Orders

The valuation class - SDM Information Systems

Assignment of Schema group to purg organization • Define Schema Determination • Determine Calculation Schema for Standard Purchase Orders VIII Sep 4, 2008 ➢Schema – Structure that defines the processing steps calculations must be executed maintenance of a quotation, a

  1. Purchasing
  2. Procurement with SAP MM
  3. Oracle Purchasing User's Guide
  4. Supply Chain Management Procurement
  5. ME21N Create Purchase Order Freight Condition
  6. Procurement and Spend Fact and Dimension Modeling
  7. e-Ordering and e-Invoicing XML schema working document V2
  8. 850 Purchase Order
  9. TSCM50 Procurement I
  10. purchase order

Calculation Spreadsheet_Slug Catcher

Slug Catcher Manual - futureglobalnetworkcom

coventryperformingarts slug catcher bernardkotlar slug catcher manual pdf futureglobalnetwork slug catcher manual pdf

CALCULATION TOOL ENGINE-COMPRESSOR.xls

FanSave 41 User's Manual Energy Savings Calculator for Fan

PDF Turbocharger Compressor Calculations MRT Performance mrtperformance au MRT Technical Turbocharger Compressor Calculations pdf PDF Honda Engine Compression Calculatordev kofler it honda engine compression calculator pdf PDF Honda Engine Compression Calculator Software

  1. turbo spool calculator
  2. compound turbo calculator
  3. ls turbo calculator
  4. corrected air flow calculator
  5. turbocharger design calculations
  6. turbo compressor maps
  7. turbo ar calculator
  8. boost calculator

Calculations and Tables QRG Slickline

Report PDF - USGS Publications Warehouse

PDF OPEN HOLE WIRELINE LOGGING Self Learning Module UiO uio no studier emner Open Hole Wireline logging pdf PDF WellCAP® IADC WELL CONTROL ACCREDITATION PROGRAM iadc wp content uploads WCT 2WLS pdf PDF

  1. wireline catalog
  2. wireline interpretation
  3. wireline components
  4. schlumberger wireline tool acronyms
  5. schlumberger wireline logging
  6. schlumberger wireline truck
  7. open hole wireline
  8. baker hughes wireline services catalog
Home back Next

Description

GASSI TOUIL LNG PROJECT ARZEW,

ALGERIA

CALCULATION OF CHEMICAL STORAGE SHELTER & FOUNDATION

- 07503

PROJECT TITLE

LOCATION

ALGERIA

25-Sep-07

Issue for Review

DESCRIPTION

Check'd

By Date Client Approval

GASSI TOUIL LNG PROJECT ARZEW,

ALGERIA Page

CALCULATION OF CHEMICAL STORAGE SHELTER & FOUNDATION GENERAL 1

Uniform Building Code,

UBC 1997 American Society of Civil Engineers,

C15-1F-6379 9-12D-6379

Specification for Structural Design Specification for Design Requirments for Wind Loads Specification for Design Requirements for Eartquake Loads for LNG Facilities Fabricated Reinforcing Steel Basis Foundation Design

yield strength Fu = 400 MPa min

Concrete

Concrete Class Class C

Design strength 300 kg/cm2 (30 Mpa) Cement Type V (ASTM C150) Max

size of coarse 1 1/4 inches (30 mm) max

GASSI TOUIL LNG PROJECT ARZEW,

ALGERIA Page

CALCULATION OF CHEMICAL STORAGE SHELTER & FOUNDATION slump min 75 mm

Loading data Equipment Loading data shall be refer to loading data information indicated in Doc No

Live and Wind Load shall be refered to project documents mentioned in section 2 1

This structure is not fire-proofed (as per Fire Proofing Zone info from HSE group) Th Table-1 Dead Loads of Major Materials Material Reinforced Concrete Plain Concrete Structural Steel Soil Grating Electrical & Instrument

Dead Load 2

4 ton/m3 2

3 ton/m3 7

Dead Load (DL)

Roof Load Roof Load system will be transfer at rafter as uniform load Space of purlin @ = 1

0 m q2= 3

GASSI TOUIL LNG PROJECT ARZEW,

ALGERIA Page

CALCULATION OF CHEMICAL STORAGE SHELTER & FOUNDATION Total DL from roof,

Siding Load Space of purlin @ = 1

9 q2= 1

Metal sheet siding thk = 0

5 q 3 = 31

51 kg/m 8

Spasi Sagrod @ = kg/m mm kg/m kg/m

Live Load (LL) Minimmum roof live load for calculation Live Load On Rafter multiply by 8 m

Table 16-C) 100 kg/m2 = 100 x 8 = 800 kg/m'

Piping Load “P” { P(E),

and P(T) } This load is neglected

Wind Load (W) Wind load be calculated in accordance with the formula as given in ASCE 7-98,

in general : Basic wind speed (V) = 33 m/s (from Meteorological Climate Summary) Exposure Category = Exposure C (from section 6

GASSI TOUIL LNG PROJECT ARZEW,

ALGERIA Page

CALCULATION OF CHEMICAL STORAGE SHELTER & FOUNDATION q = qz for windward walls evaluated at height z above the ground

Kz = velocity pressure exposure coefficient (from table 6

main wind force resisting system) Table of velocity pressure at Y height above ground Kz Kzt Kd Height I V2 (m) (m/s)2 0 ~ 4

85 1089 4

85 1089 6

85 1089 0

85 1089 9

85 1089 12

85 1089 15

2 ~ 18 1

85 1089 21

16 m 48 m

656 587

283 613

385 639

486 678

638 711

265 737

367 763

468 789

so that : L/B h/L Horizontal distance from windward edge =

External Pressure Coefficient ,

Cp Table of Wall Pressure Coefficient,

Cp Surface

Use with

Windward wall

All values

Leeward wall

0~1 2 =>4

Sidewalls

All values

so that got Cp for wall is : _______________________________________________________________________________________ _ GTG SHELTER

GASSI TOUIL LNG PROJECT ARZEW,

ALGERIA Page

CALCULATION OF CHEMICAL STORAGE SHELTER & FOUNDATION Cp,ww = 0

Cp for Use with qh Wind Direction

Normal to ridge for  >= 10o

Normal to ridge for  < 10o and parallel to ridge for all 

0 to h/2

Leeward Angle  (o) 10 15 >=20

Value is provided for interpolation purposes

Value can be reduced linearly with area over which it is applicable as follows **

Area (sq ft) = 1000 (92

9 sq m)

Reduction Factor 1

Notes : 1

For flexible building use appropriate G as determined by rational analysis

Plus & minus signs signify pressures acting toward & away from the surface,

Linier interpolation is permitted for values of L/B,

Where two values of Cp are listed,

this indicates that the windward roof slope is subjected to either positive or negative pressures and the roof structure shall be designed for both conditions

Notation : = height above ground (m) z mean roof height,

except that eave height shall be used for  < 10o (m) = h qz,

evaluated at respective height (kg/m2) = gust effect factor G = horizontal dimension of building,

measured normal to wind direction (m) B = horizontal dimension of building,

measured parallel to wind direction (m) L' Cp,wr = Cp,lr =

angle of plane of roof from horizontal ( o ) 1

_______________________________________________________________________________________ _ GTG SHELTER

GASSI TOUIL LNG PROJECT ARZEW,

ALGERIA Page

CALCULATION OF CHEMICAL STORAGE SHELTER & FOUNDATION

Total wind pressure acting on gable hip roof is : L'= distance between purlin A

Wind Acting Roof in X-Direction qh = For h = 4

776 ton/m

418 ton/m

388 ton/m

209 ton/m

477 ton/m

298 ton/m

209 ton/m

239 ton/m

149 ton/m

105 ton/m

*Leeward UNI Y 0

*Frame Line 1 & 7

*Windward UNI Y

Wind Acting Wall in X-Direction

so that : Gz = *Frame Line2 & 3 L1 =

5 kg/m2 1

*Windward UNI GX 0

*Frame Line1 & 7

*Windward UNI GX 0

Wind Acting Wall in Z-Direction

so that : Gz = *Frame LineA & B L1 =

50 kg/m2 1

_______________________________________________________________________________________ _ GTG SHELTER

GASSI TOUIL LNG PROJECT ARZEW,

ALGERIA Page

CALCULATION OF CHEMICAL STORAGE SHELTER & FOUNDATION *Windward UNI GZ 0

239 ton/m

149 ton/m

105 ton/m

119 ton/m

075 ton/m

052 ton/m

*Leeward UNI GZ 0

*Frame Line A (side)

*Windward UNI GZ 0

The calculation will be designed as structural space based on assumption : Transversal direction (againstframe with moment connection Longitudinal direction (againsframe with pin connection b

Connection Connection between column base plate and pedestal is designed as pinned in both direction

The structure will be analyzed with STAAD PRO structural analysis computer programming and as space frame analysis

FRAMING ELEVATION AND DETAIL 3D-VIEW LAY OUT

LOADINGS DEAD & LIVE LOAD WIND LOAD X1 DIRECTION

WIND LOAD X2 DIRECTION

WIND LOAD Z1 DIRECTION

_______________________________________________________________________________________ _ GTG SHELTER

GASSI TOUIL LNG PROJECT ARZEW,

ALGERIA Page

CALCULATION OF CHEMICAL STORAGE SHELTER & FOUNDATION

_______________________________________________________________________________________ _ GTG SHELTER

GASSI TOUIL LNG PROJECT ARZEW,

ALGERIA

21 of 38

CALCULATION OF CHEMICAL STORAGE SHELTER & FOUNDATION 5

SUPPORT REACTION 5

Joint 1

LC 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 121 122 123 124 125 126 127 128 129 130

Support Reaction FX FY FZ MX MY MZ (TON) (TON) (TON) (T

449 0 0

034 0 0

322 0 0

449 0 0

576 0 0

53 0 0 0

58 0 0 2

253 0 2

13 0 0 2

58 0 0 0

58 0 0 0

253 0 0

253 0 0

505 0 2

449 0 0

________________________________________________________________________________________ GTG SHELTER

GASSI TOUIL LNG PROJECT ARZEW,

ALGERIA

22 of 38

CALCULATION OF CHEMICAL STORAGE SHELTER & FOUNDATION

401 0 0

632 0 0

401 0 0

055 0 0

346 0 0

401 0 0

456 0 0

632 0 0

336 0 4

808 0 3

311 0 4

808 0 3

505 0 4

112 0 0

________________________________________________________________________________________ GTG SHELTER

GASSI TOUIL LNG PROJECT ARZEW,

ALGERIA

23 of 38

CALCULATION OF CHEMICAL STORAGE SHELTER & FOUNDATION

001 0 0

________________________________________________________________________________________ GTG SHELTER

GASSI TOUIL LNG PROJECT ARZEW,

ALGERIA

24 of 38

CALCULATION OF CHEMICAL STORAGE SHELTER & FOUNDATION

26 0 0 0

268 0 1

755 0 0

268 0 1

755 0 0

________________________________________________________________________________________ GTG SHELTER

GASSI TOUIL LNG PROJECT ARZEW,

ALGERIA

25 of 38

CALCULATION OF CHEMICAL STORAGE SHELTER & FOUNDATION

001 0 0

001 0 0

________________________________________________________________________________________ GTG SHELTER

GASSI TOUIL LNG PROJECT ARZEW,

ALGERIA

26 of 38

CALCULATION OF CHEMICAL STORAGE SHELTER & FOUNDATION

103 0 0

808 0 0

449 0 0

034 0 0

322 0 0

449 0 0

576 0 0

53 0 0 0

58 0 0 2

253 0 2

13 0 0 2

58 0 0 0

58 0 0 0

253 0 0

253 0 0

378 0 2

449 0 0

________________________________________________________________________________________ GTG SHELTER

GASSI TOUIL LNG PROJECT ARZEW,

ALGERIA

27 of 38

CALCULATION OF CHEMICAL STORAGE SHELTER & FOUNDATION

14 0 0 0

33 0 0 0

33 0 0 0 0

STEEL TAKE OFF

ST UC 203X203X46 219

________________________________________________________________________________________ GTG SHELTER

GASSI TOUIL LNG PROJECT ARZEW,

ALGERIA

28 of 38

CALCULATION OF CHEMICAL STORAGE SHELTER & FOUNDATION ST UB 610X305X14 119

T UC3 05X305X97 45

________________________________________________________________________________________ GTG SHELTER

29 of 38

GASSI TOUIL LNG PROJECT ARZEW,

ALGERIA

CALCULATION OF CHEMICAL STORAGE SHELTER & FOUNDATION 4

DESIGN COCRETE STRUCTURE 4

DEFLECTION CHECK Calculation of deflection is based on STAAD 3 output and actual deflection is obtained from : for beam :

D = D'=

D = D'=

Joint displacement maximum,

(See Attach- 2) JOINT

H (cm) 400

X-Trans

Y-Trans

Z-Trans

Global ∆ (cm) 0

Actual Joint displacement maximum,

(See Attach-2) a

Longitudinal Beam Y < Y

Length (L) cm

Y-displ allw

Tranversal Beam Y < Y

Length (L) cm

Y-displ allw

_______________________________________________________________________________________ _ GTG SHELTER

CONCRETE FOUNDATION DESIGN CHEMICAL STORAGE SHELTER (STEEL) Foundation Design F1

Bf = Lf =

BOF El = Hf = Hs = Hp =

Foundation Weight W ftg = 7

Resistant Moment Zx = 1/6 Bf Lf2

00 OK 1

ZZ = 1/6 Lf Bf2

Wfdn = 17

Soil Pressure Check S+ = FY' / (Bf x Lf) + MX' / Zx + MZ' / Zz

S- = FY' / (Bf x Lf) + MX' / Zx + MZ' / Zz

Soil Bearing Capacity =

with FY' = FY + W fdn FX' = FX

Soil Bearing Capacity =

FZ' = FZ Foundation Stability Check SFsld = 0

5FY'/(FX'2+FZ'2)0

5Lf FY' / { (BOF+0

2) FZ' }

(Erection) (Operating&Test)

(Erection) (Operating&Test)

SFOT-Z = 0

5Bf FY' / { (BOF+0

2) FX' }

JOINT LOAD 16

SUPPORT REACTION FROM STAAD PRO (MTON) FX FY FZ MX MY MZ

FORCES AT BOTTOM OF FOOTING (MTON) Soil Press

(t/m2) SFsld FX' FY' FZ' MX' MZ' S+ S-

SFOTX SFOTZ Check

9783 61

7986 19

01586 75

46425 78

06827 53

1165 61

2791 44

4341 39

3647 20

46423 18

2033 19

0477 93

3509 19

13989 66

5373 24

9007 21

9783 61

7986 19

12619 66

06827 53

4341 39

3647 20

1165 61

2791 44

46423 18

2033 19

88253 49

0477 93

3509 19

1025 82

2397 17

5373 24

9007 21

88253 28

02297 16

73864 12

4629 19

73864 12

4629 19

89866 20

6496 18

83261 20

9093 22

88253 28

02297 16

73864 12

4629 19

73864 12

4629 19

89866 20

6496 18

134 135

83261 20

9093 22

9783 61

7986 19

01586 75

88918 34

46425 78

11207 23

1165 61

2791 44

46423 18

2033 19

4341 39

3647 20

62989 26

4135 18

13989 66

7643 132

CONCRETE FOUNDATION DESIGN CHEMICAL STORAGE SHELTER (STEEL) Foundation Design F2

Bf = Lf =

BOF El = Hf = Hs = Hp =

Foundation Weight W ftg = 1

Resistant Moment Zx = 1/6 Bf Lf2

00 OK 0

ZZ = 1/6 Lf Bf2

W soil =

Soil Pressure Check S+ = FY' / (Bf x Lf) + MX' / Zx + MZ' / Zz

S- = FY' / (Bf x Lf) + MX' / Zx + MZ' / Zz

Soil Bearing Capacity =

with FY' = FY + W fdn FX' = FX

Soil Bearing Capacity =

FZ' = FZ Foundation Stability Check SFsld = 0

5FY'/(FX'2+FZ'2)0

5Lf FY' / { (BOF+0

2) FZ' }

(Erection) (Operating&Test)

(Erection) (Operating&Test)

SFOT-Z = 0

5Bf FY' / { (BOF+0

2) FX' }

JOINT LOAD 1

SUPPORT REACTION FROM STAAD PRO (MTON) FX FY FZ MX MY MZ

FORCES AT BOTTOM OF FOOTING (MTON) Soil Press

(t/m2) SFsld FX' FY' FZ' MX' MZ' S+ S-

SFOTX SFOTZ Check

7225 10

3744 12

81182 9

42375 6

99024 8

26313 17

45625 21

3322 10

4155 20

64059 4

52475 3

55149 3

7225 10

3744 12

38202 8

06813 7

99024 8

26313 17

25664 8

73563 8

45625 21

59377 5

69744 208

4333 10

5222 20