PDF inhalation exposure calculation,time weighted -IHT400 Calculation - Calculation
Wait Loading...


PDF :1 PDF :2 PDF :3 PDF :4 PDF :5 PDF :6 PDF :7 PDF :8


Like and share and download

Calculation

IHT400 Calculation

PDF Basic Manual for Calculation of the Estimated Human Exposure nite go jp en chem ghs risk consumer guidance ap1 e pdf PDF Instructions for calculating capital requirements for bank default fund

Related PDF

Basic Manual for Calculation of the Estimated Human Exposure

[PDF] Basic Manual for Calculation of the Estimated Human Exposure nite go jp en chem ghs risk consumer guidance ap1 e pdf
PDF

Instructions for calculating capital requirements for bank default fund

[PDF] Instructions for calculating capital requirements for bank default fund bis publ bcbs227 instructions pdf
PDF

AIMR Calculation Comments - The Global Investment Performance

[PDF] AIMR Calculation Comments The Global Investment Performance gipsstandards standards First Rate cm pdf
PDF

Annex : Calculation of Mean and Standard Deviation

[PDF] Annex Calculation of Mean and Standard Deviation who int ihr training laboratory 7 c annex quant qc pdf
PDF

Calculation examples for nominal bonds

[PDF] Calculation examples for nominal bonds riksgalden se calculation nominella obligationer eng pdf
PDF

ice us treasury bond index series™ calculation methodology - Icecom

[PDF] ice us treasury bond index series™ calculation methodology Ice theice ICE US Bond Index Calculation Methodology pdf
PDF

Index Calculation Guideline - Solactive

[PDF] Index Calculation Guideline Solactive solactive Index Calculation Guideline Solactive pdf
PDF

IHT400 Calculation

IHT400 Calculation Page 1 HMRC 07 18 Inheritance Tax account IHT400 Calculation When to use this form Fill in this form if you've already filled in the form
PDF

Calculation

IHT400 Calculation

PDF Basic Manual for Calculation of the Estimated Human Exposure nite go jp en chem ghs risk consumer guidance ap1 e pdf PDF Instructions for calculating capital requirements for bank default fund

  1. inhalation exposure calculation
  2. time weighted average calculation
  3. toxicology dose calculation
  4. estimated exposure dose
  5. estimated daily intake calculation

Calculation

IHT400 Calculation

PDF Basic Manual for Calculation of the Estimated Human Exposure nite go jp en chem ghs risk consumer guidance ap1 e pdf PDF Instructions for calculating capital requirements for bank default fund

  1. inhalation exposure calculation
  2. time weighted average calculation
  3. toxicology dose calculation
  4. estimated exposure dose
  5. estimated daily intake calculation

Calculator Priza de Pamant Excel 3003

PLANUL DE MANAGEMENT AL RISCULUI LA - Ministerul Mediului

PDF GHID DE BUNĂ PRACTICĂ PENTRU PROIECTAREA MDRAPmdrap ro consutrctii ancheta publica ghid proiectarea instalatii iluminat pdf PDF Catalogul produselor OREGON oregonproducts eu oregonproducts eu site 6 flipbooks CAT RO RO publication pdf PDF

calculator Project Report

Mini-project report

PDF Calculator Introduction Requirements Design The StateWORKS stateworks active download Calculator pdf PDF Mini Project Report Computer Science cs northwestern edu ~agupta projects FinalReport pdf PDF A Calculator Project cs appstate

  1. computer science project report pdf
  2. c++ project report pdf
  3. simple calculator project report pdf
  4. java project report pdf
  5. project report on scientific calculator in java pdf
  6. mini project report sample
  7. computer science project report free download
  8. matrix calculator project report

calculator synopsis

QMS 001 Business Statistics FALL 2015 - Ryerson University

ing report provides details about the calculator operated on, instructions on using the calculator, and an in depth look at the software written to complete the  The calculator known from Microsoft Windows systems is taken as the application Although the power of the StateWORKS concept only shows up

  1. Software-Based Scientific Calculator Using Visual Basic.Net
  2. environmental synopsis
  3. GPA Calculator Presentation
  4. Synopsis
  5. Calculator-Controlled Robots
  6. Near Repeat Calculator
  7. SOA Pension Research Summary
  8. instructions on using the calculator
  9. 1.3.4 Options for plot
  10. calculator to present and analyse statistical data

calculator techniques 2

Inductance Calculation Techniques --- Approximations and

engineervincentpardopilien weebly uploads 2 Set calculator to equation mode MODE>5>1 for two variable equation Input the coefficients of a,b and constant c of the first equation 2 = 3 = 6 = Input the coefficients of a,b and constant c of the second equation

Calculator Techniques for Solving Progression Problems

Contribution-based Compensation and Appraisal System (CCAS

cengage resource uploads downloads from the Substitution Principle (see Appendix A 1) and simplification techniques Solving a Linear Equation a Original equation Add 6 to each side Divide each side by 3 b Original equation Subtract from each side Subtract 4 from

Calculator Techniques (Pass無し 131119

Fisheries United States - US Fish and Wildlife Service

PDF O'FALLON TOWNSIDP HIGH SCHOOL DISTRICT 203 O OTHS oths us cms lib Domain District 20Audit 20FY2017 pdf PDF VakıfBank's yellow illuminates the future vakifbank tr documents finansal Annual

Calcul_des_pannes_selon_EC3,_Dahmani_lahlou

etude et dimensionnement d'une hall metallique - Depot

PDF dimensionnement ResearchGate researchgate selon Charpentes metalliques Conception et dimensionnement selon les eurocodes pdf PDF master (lmd) formation c m s1+s2+s3 Faculté du Génie de la fgc ummto dz MASTER LMD FORMATION

Home back Next

Description

BS 8100- Part 4 Kgs Mean Site Wind Speed Vs

VB xSbxSdxSc

Where 3 sec Gust wind speed

For Zone

180 Kmph

Relative Hourly Mean Wind speed Vb

Altitude factor

Velocity Hr Mean W S Cl 3

Section 1 Section 2 Section 3

Section 4 Section 5

MW MW Dia GSM A1 B1 C (Arm 1)

Direction factor Cl 3

5 : S d'1

VsxSoxgn

A2 B2 C (Arm 2)

Terrain Factor

Country Terrain

S 0 = S c'(1 + S h) Where S c': Fetch Factor = 1

6 (Cl 3

Fo ht rc e

GSM Antennae 0

Trun Mome

242 Kmph

For Survival Condition

W k (W pressure) =

56 x V z 2

2525 N/m2

525 kN/m2

For Servisibility Condition Wk

V b x Sa x So 24

455 x 56

W k operational =

201 Kmph

56 x Vk 2

1753 N/m2

Multiplication Factor for operational to survival W k operational

Zone 1 Multi Factor0

W k Survival

R AW = C N K A A A Sin 2 q CN For Power cables

Force /kN/m

Option1 Option2

Dia(m) 0

R AW Operational SurvivalOperational Survival 0

ANTENNA ANCILLARIES R AW = C A K A A A MW Dishes At height/(m) Nos 33

Wk kN/m2 Antenne Force/Antennae kN CA R AW Wt Dead(kN) OperationalSurevival Area (m2)K A Operational Survival 1

2 180 1

R AW = C A K A A A CA

Cellular Antennas ( GSM ) At Height (m) 34

Wk kN/m2

Antenne K A

BxH (Kg) (kN) OperationalSurevival Area/(m2) 6

Force/Antenne kN R AW Operational Surevival 1

Operational Wind Speed

Structural components AS Structural Pipe/Rod No Dia

Section-01 (Bellow32m)

Section-02

Section-03

Section-04

Section-05

Anciliary Components ( Data Cable ) AA

Length Area Dia No (m2) (m) 0

Width Height Solidity Drag (m) (m) Ratio Coeff C NC b h y

Operational Wind Force Wk Pipes kN/m2 kN

Length Area m2 (m) 0 0

MW Dishes

OVER TURNING STABILITY CALCULATION

Stability Circle

YPlatform

YC LF Cos 60

LF LF Sin 60

Checking the side most likely to fail

Center of Gravity Without Concrete Weight Tower+Head Load 1533 Kg Shelter 0 Kg Tower Frame 289 Kg 2 Front Poly Pts(Arm) 576 Kg 2 Rear Poly Pts(Arm) 0 Kg Base Struc Wt3045 Kg Wt of Accessories0 Kg Resultant Wt 5443 Kg

Force 15,034 0 2,835 5,651 0 29,871 0 53,391

Tr M (J) 7

52 E+03 0

00 E+00 8

51 E+02

70 E+04 0

00 E+00 5

08 E+04 0

00 E+00 4

22 E+04

For Power cables

Option1 Option2

Dia(m) 0

W k KN/m2 Force /kN/m R AW Operational SurvivalOperational Survival 0

Center of Gravity of the system with Concrete Weight Force Y Tr M (J) Tower+Head Load 1533 Kg 15,034 0

13 E+05

Turning Moment = WF Per Segment x No of Segments x Elevation

Total Wind Turning Moment = 1576

Y Platform = X Platform =

(Length of Guy Arm)

68 Degrees

(Center of gravity of system with concrete Blocks)

- Y CG)}

71 Degrees

X Platform / Sin

Comparisan to select the side Most likely to fail Side Leverage

(Y platform

- Y CG) 5

88 Stable

C legs leverage

Radius of Stability Circle

(Y CG + L'x Cos 60)

62 Failure

Concrete Blocks Required W 53

391 KN 0

790 m Y CG

6 72 KN

C 186 KN

Taking Moments about A Over turning moment= = Moment of self Weight = = Resultant Moment = = Required Weight

Taking moment Overabout Turning Moment Moment of Self WtResultant MomentRequired Wt @ KNm KNm KNm KN about A 1674 278

15 1395

4 Over Lap

A (Near Goose Neck1)

B ( Under Twr1)

29 Goose

C (Arm 1)

89 Side

A (Near Goose Neck2)

79 Legs

B ( Under Twr2)

C (Arm 2)

Center of Gravity

0483 mm 2

0 Nos 1

2 Nos 6

84 Ton 34

m kN kN kN/m kN/m kN/m kN/m kN/m kN/m

Perational Vb

1 SL 24

Pitch 1 Pitch 2 Pitch 3

Pitch 4 Pitch 5

Post Desaster 1

Survival Vs 24

V k = V b x Sa x So

Altitude Factor

VsxSbxSdxSc Sc Sh Sd

08 0 55

S 0 = S c'(1 + S h) Gamma Partial SF Vz=VsxSoxgn

N/m2 kN/m2

Wind Pressure

Survival Wk kN/m2

Wind Force Pipes kN

Prof val

Rest R av= cn ka aa sin 2 shy

25 m 20

3240 2400

6480 4800

0 16000

Front 5400 Kg 5400 Kg 1620 Kg 1620 Kg 7900 Kg 7900 Kg

5473 24

Wind Force effect UDL Description Area Repetition Operational Survival of Segments kN kN m/hr

Operationl

Neutral Structure In Sri Lanka

Mean Wind Speed GSM Antennae

Section 1

160 120

Section 1

Section 2

Section 3

Section 4 Section 5

055 m2 0

Elevation App Loads m ISURU 34

8596 33

0035 32

2563 32

2563 25

2703 18

2711 11

Wind Pressure

Cable s'Sin 2 Shy

Prof Has Considered 16mm Rods 0

Turning Moment Pt Force Operational Survival Operational Surv KN KNm 4

0454 19

725192 82

Reference BS 8100-4

Description

Results

WIND SPEEDS Mean Wind Spped Mean Wind Speed = 180 km/h for Zone 1 Corresponding Hourly Mean Wind Speed = 24

455 m/s

Clause 3

VS  Vb S a S s'S d'Vs = Mean Wind Speed Vb = Basic Wind Speed (Hourly Mean Wind Speed) Sa = Altitude Factor Ss = Seasonal Factor Sd = Directional Factor

Vs = Clause 3

S a  1 + 0

Sa = 1+0

001x100

Clause 3

Clause 3

VS  Vb S a S s'S d'Vs = 24

Reference

Description

Results

Effective Wind Speed Clause 3

V z  VS S o g v Vz = Effective Wind Speed VS = Mean Wind Speed So = Terrain Factor γv = Partial Safety Factor for Wind Speed VS =

Clause 3

For an Open Country Terrain

S o  S c'1 + S b  Sc = Fetch Factor Sb = Topography Factor Figure 3

Clause 3

considering Upper Graph Performance γv = Vz = 26

Reference

Description

Results

Charasteristic Wind Speed Clause 3

Vk  Vb S a S o Vk = Charasteristic Wind Speed Vb =

Description WIND RESISTANBCE

Vk = 24

Reference

Results

Section Members Clause 4

RM  K q C N As RM = Total Wind Resistance Kθ = Wind Incident Factor CN = Overall Normal Drag Coefficient As = Total Area Projected on the Concerned Face 1

Face of 0

Length of the Pipe Segment

Number of Pipes

Area of Pipes Facing to Wind

Length of one Stiffener

Number of Stiffeners

Area of Pipes Facing to Wind

Number of Stiffeners

Area of Pipes Facing to Wind

Reference

Description 1

16 mm 0

Results

Outer Diameter of the Cable

Length of one Cable Segment

Number of Cables

Area of Cables Facing to Wind =

Total Solid Area Facing to Wind = A0 =

Width of the Segment

Height of the Segment

Area of the Section

Solidity Ratio = Ψ = As/A

Figure 7

Figure 8

RM  K q C N As 2 0

For a Wind Load Corresponding to 1m Length of a Tower Section,

The Multipliction Factore =1/0

0877 mm

Reference

Description 2

Power Cables

R AW  K A C N AA

Results

Clause 4

R AW  K A C N AA RAW = Wind Resistance KA = Reduction Factor for Ancillaries CN = Drag Coefficient AA = Reference Area of the Item

Clause 4

Table 2

Diameter of a Cable

Area of a Unit Weight

Number of Cables Facing Wind = RAW =

Reference

Description 3

Microwave Antennae

R AW  K A C A AA

25 mm 2 0

Results

Clause 4

R AW  K A C A AA CA = Drag Coefficient

Clause 4

Clause 4

Clause 4

Diameter of an Antena

Area of an Antena

Number of Antenae

Reference

Description 4

GSM Antennae

R AW  K A C A AA

2 m 2 1

Results

Clause 4

R AW  K A C A AA

Clause 4

Clause 4

Clause 4

Dimensions of an Antena Area of an Antena

Number of Antenae

Reference

Description WIND LOADING

90 m 2 0

Results

Clause 5

Survival Conditions

W k = Meam Wind Pressure ρa = Density of Air Vz = Effective Wind Speed 3 1

12 kg/m

ρa = Vz = Wk = 0

Clause 5

12 kg/m

14 m/s 2 2

52 kN/m

Operational Conditions

Vz = Effective Wind Speed 3 1

12 kg/m

ρa = Vz = Wk = 0

Clause 5

Reference

12 kg/m

95 m/s 2 1

75 kN/m

The Wind Forces for Survival and Operational Conditions can be Calculated by Multiplying these Wind Pressure Values by the Wind Resistance Values of Each Type of Components

Description

Results

Uniformly Distributed Loads Wind Loads on:

Operation Survival

Section 1-1 Section 1-2 Section 2 Section 3 Section 4 Section 5 Data Cables

Point Loads Wind Loads on Antennae 6 GSM Antennae 2 0

Operation Survival kN kN 4

The tower has been analyzed fro operational canditions

TANTRI MARINE ENGINEERING COMPANY Design and Consultation Department No

Biyagama Road,

Kelaniya

Performed by

TOWER SPECIFICATION Tower type Natulre of support Overall height Number of sections

Project

BS 8100- Part 4 Mean Site Wind Speed Vs = VsxVbxSdxSc Where 3 sec Gust wind speed = 50

For Zone

180 Kmph

Relative Hourly Mean Wind speed Vb = 25 m/s Vb Sa

Altitude factor Cl 3

Direction factor Cl 3

5 : S d'1

VsxSoxgn

Terrain Factor

Survival

Country Terrain

S 0 = S c'(1 + S h) Where S c': Fetch Factor = 1

6 (Cl 3

Wind Pressure = =

Vs 25 x 1

59 x V z

78 kN/m2

For Servisibility Condition Vk

V b x Sa x So 17

W k operational =

59 x 40

946 kN/m2

R AW = C N K A A A Sin 2 q CN

Option1 Option2

Dia(m) 0

W k KN/m2 Force /kN/m Perational Survival OperationalSurvival 0

ANTENNA ANCILLARIES R AW = C A K A A A At height/(m) Nos 36

Wk kN/m2 Antenne Dead(kN) Operational Surevival Area (m2) K A 180 1

Force/Antennae kN OperationalSurvival 1

R AW = C A K A A A CA

Cellular Antennas At Height

Wk kN/m2

Antenne

Force / Antenne kN

BxH (Kg) (kN) Operational Surevival Area/(m2) 6

Anciliary Components ( Data Cable ) AS Structural Pipe/Rod Length Area Dia No Dia

AA Length (m)

Width (m)

Solidity Ratio y

Height (m)

OperationalSurevival 0

Area m2

Over turning stability Calculation

YPlatform Stability Circle

X Platform

YTWR Y=0 Line B

LF LF Cos 60

LF Sin 60 Figure 8

Center of Gravity Without Concrete Weight Force Tower+Head Load 1533 Kg 15,034

Tr M (J) 7

52 E+03

Shelter 0 Kg Tower Frame 289 Kg 2 Front Poly Pts(Arm) 576 Kg 2 Rear Poly Pts(Arm) 0 Kg Base Struc Wt 3045 Kg Wt of Accessories 0 Kg Resultant Wt 5443 Kg

E+00 E+02 E+04 E+00 E+04 E+00 E+04

Center of Gravity of the system with Concrete Weight Force Y Tr M (J) Tower+Head Load 1533 Kg 15,034 0

38 E+05

Turning Moment = WF Per Segment x No of Segments x Elevation

Wind Force effect Area Repetition Elevation of Segments m GSM Antennae 0

WF per seg Turning Moment KN KNm 1

Total Wind Turning Moment = Total Wt of the System = Leverage Required

Y Platform X Platform

(Center of gravity of system with concrete Blocks) (Length of Guy Arm)

68 Degrees

- Y CG)} 2

71 Degrees

X Platform / Sinf

6 1x1 1

Comparisan to select the side Most likely to fail Side Leverage=

A legs leverage =

C legs leverage = = Radius of Stability = Circle

39 A B C

(Y CG + L'x Cos 60) 3

(Y platform

- Y CG) 5

Concrete Blocks Required W

391 KN 0

6m 72 KN

C 186 KN

Taking Moments about A Over turning moment =

186 x 9

- Y CG )

Moment of self Weight = = Resultant Moment

Over turning moment

Resultant Moment / ( 6 + 3)

Taking moment Over about Turning Moment Moment of Self Wt KNm KNm about A 1674 278

15 about C

Resultant Moment KNm 1395

Required Wt KN 155

Post Desaster Zone 1 Zone 2 Zone 3 Sa

Altitude Factor

S 0 = S c'(1 + S h) Gamma Partial SF Vz=VsxSoxgn

120 105 85

Operationl Neutral Structure In Sri Lanka

110 95 75

856169 0

Height Varies

Drag Coeff C NC

OperationalForce

Wk kN/m2

Prof kN/m

with Uni cable With Solidity W k * RM F1 Balance

Cable A with shy A no shy

Without Solidity Tot F

25 m 20

75 m 15

Lightening Arrestor 0

Prof our 1260

00 6019

54 1940

00 5128

00 2460

80 2400

28 3029

85 2822

28 2274

0 16000

Checking for Bending and Shearing and deflection of Goose neck due to Uplift

No of Beams Weled Weld Thickness

Weld Contact Lenth

UB200x150 UB200x150 UB150x150 UB150x150

150 m 0

395 m 0

250 m 0

4 2 3 2

Total Weld Length Throught thickness factor

Effective Length

Distance Between Pivot Pts

Forces On Cantelevered Arm Weight Force Self Wt 180 Kg

Force At Pivot

Stress developed

Cos(45) 0

8580207

608 N/m2

58 N/mm2

Allowed Tensile Stress =

00 N/mm2

J J J J J J

600 m 0

791 m 0

750 m 0

348 m 2

Analysis for bending of Cantilevered Beam

Up lift

210 Gpa

L Extended

60 E-05

Max Bending Moment Allowed

39 E+04

Differential Equations EI V(x) 4

EI V(x) 3

EI V(x) 2

EI V(x) 1

EI V(x)

Boundry Conditions

Sh Force V(0) 3

RB #########

Tangent V(0) 1

EI V(L) 2

Deflection V(0)

From eq'n 5 V(0)

From eq'n 4 V(0) 1

From eq'n 3

Form Equation 2 V(L) 3

EI V(L) 3

295,445

Neutral Axis

Neutral Axis

Moment of Inertia of the Flange

For two flanges Moment of Inertia of web and Plates

For three webs Total Moment of inertia of Lifting I beam

1971875

1143333

3430000

c1 From 7

295,445

-886335

Sh Force

EI V(x) 3

EI V(x) 2

295,445

-886,335

Tangent

EI V(x) 1

EI V(x)

147,723

-886,335

Deflection

295,445

Table 1 Deflection Parameter Table

0 1 2 3

X from end Deflection mm SF / N 0

71 295,445

BM 886,335 864,177 842,019 819,860

Safe Safe Safe Safe

Deflection /(mm)

53 10,000

Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe

Deflection /(mm) 0

Bending Moment Diagram 1,000,000 800,000 600,000 400,000 200,000 0 1

Shear Force Diagram /( N ) 350,000 300,000 250,000 200,000 150,000 100,000 50,000 0 1

Max Min

5 6 7 8

09E-06 5

98E-06 6

84E-06 7

Neutral Axis tw

Componet Material Type Twr Pipes Stiffner Flat Iron Pivot Shaft GuyArm

SHS 4'x4'x 6 Brackets

Guy Stuff

Turn Buckle Shacles Gassete Plates

Twr Lock

Lock Pin Verti Screw

Stress Yield(N/mm2) UTenStr st 52 335 1020 C Steel 200

Tensile Shear 523 380

Material

? Yield strength Ultimate strength first carbon nanotube ropes

? 3,600 Structural steel ASTM A36 steel 250 400 Steel,

API 5L X65 (Fikret Mert Veral) 448 531 Steel,

high strength alloy ASTM A514 690 760 Steel,

prestressing strands 1,650 1,860[citation needed] Steel Wire Steel (AISI 1,060 0

ASTM A-48 130 200 Titanium alloy (6% Al,

balance 130 Cu 350 Brass 200+ 550 Tungsten 1,510 Glass 50 (in compression)

Bending

Buckling

E-Glass N/A 3,450 S-Glass N/A 4,710 Basalt fiber N/A 4,840 Marble N/A 15 Concrete N/A 3 Carbon Fiber N/A 5,650 Human hair 380 Spider silk (See note below) 1,000 Silkworm silk 500 Aramid (Kevlar or Twaron) 3,620 UHMWPE 23 46 UHMWPE fibers[2][3] (Dyneema or Spectra) 2,300-3,500 Vectran 2,850-3,340 Polybenzoxazole (Zylon) 5,800 Pine Wood (parallel to grain) 40 Bone (limb) 104-121 130 Nylon,

type 6/6 45 75 Rubber 15 Boron N/A 3,100 Silicon,

monocrystalline (m-Si) N/A 7,000 Silicon carbide (SiC) N/A 3,440 Sapphire (Al2O3) N/A 1,900 Carbon nanotube (see note below) N/A 62,000 Carbon nanotube composites N/A 1,200[4]

Properties of Steel % % H_b UNS Number Processing Method Yield Strength Tensile MPa Strength Elongation MPa Reduction in 2 in

in Brinell AreaHardness G10100 Hot Rolled 179 324 28 50 95 G10100 Cold Drawn 303 365 20 40 105 G10150 Hot Rolled 186 345 28 50 101 G10150 Cold Drawn 324 386 18 40 111 G10180 Hot Rolled 220 400 25 50 116 G10180 Cold Drawn 372 441 15 40 126 G10350 Hot Rolled 269 496 18 40 143 G10350 Cold Drawn 462 551 12 35 163 G10350 Drawn 800 F 558 758 18 51 220 G10350 Drawn 1000 F 496 710 23 59 201 G10350 Drawn 1200 F 427 627 27 66 180 G10400 Hot Rolled 289 524 18 40 149 G10400 Cold Drawn 489 586 12 35 170 G10400 Drawn 1000 F 593 779 23 62 235 G10500 Hot Rolled 338 620 15 35 179 G10500 Cold Drawn 579 689 10 30 197 G10500 Drawn 600 F 1240 1516 10 30 450 G10500 Drawn 900 F 896 1068 18 55 310 G10500 Drawn 1200 F 551 723 28 65 210 G15216 Hot Rolled,

Annealed 558 689 25 57 192 G41300 Hot Rolled,

Annealed 413 620 30 45 183 G41300 Cold Drawn,

Annealed 599 675 21 52 201 G41300 Drawn 1000 F 916 1006 17 60 293 G41400 Hot Rolled,

Annealed 434 620 27 58 187

G41400 G41400 G43400 G43400 G43400 G43400 G46200 G46200 G61500 G61500 G87400 G87400 G87400 G92550 G92550

Cold Drawn,

Annealed 620 Drawn 1000 F 903 Hot Rolled,

Annealed 475 Cold Drawn,

Annealed 682 Drawn 600 F 1612 Drawn 1000 F 1116 Case Hardened 613 Drawn 800 F 648 Hot Rolled,

Annealed 400 Drawn 1000 F 909 Hot Rolled,

Annealed 441 Cold Drawn,

Annealed 661 Drawn 1000 F 889 Hot Rolled,

Annealed 537 Drawn 1000 F 1102

Modulus E 210x 1000 N/mm2

Density

Manuf Safty Lim

BS 8100- Part 4 Mean Site Wind Speed Vs = VsxSbxSdxSc Where 3 sec Gust wind speed

For Zone

Relative Hourly Mean Wind speed Vb = 26

25 m/s Sa

Altitude factor Cl 3

5 : S d'1

VsxSoxgn

Terrain Factor

Country Terrain

S 0 = S c'(1 + S h) Where S c': Fetch Factor = 1

6 (Cl 3

180 Kmph

Wind Pressure =

59 x V z

06 kN/m2

For Servisibility Condition Vk

V b x Sa x So 26

25 x 60

W k operational =

59 x 40

128 kN/m2

R AW = C N K A A A Sin 2 q CN For Power cables CN Option1 0

Dia(m) 0

W k KN/m2 Force /kN/m R AW Perational SurvivalOperational Survival 0

ANTENNA ANCILLARIES R AW = C A K A A A MW Dishes At height/(m) Nos 26

Wk kN/m2 Antenne Force/Antennae kN KA CA R AW Wt Dead(kN) OperationalSurevival Area (m2) Operational Survival 1

2 180 1

R AW = C A K A A A CA

Cellular Antennas ( GSM ) At Height (m) 30

Wk kN/m2

Antenne K A

BxH (Kg) (kN) OperationalSurevival Area/(m2) 3

Force/Antenne kN R AW Operational Surevival 1

Anciliary Components Structural components ( Data Cable ) AS AA Structural Pipe/Rod Length Area Dia No Length Area m2 No Dia

Section-05

Operational Wk Pipes kN/m2 kN

Width Height Solidity Drag (m) (m) Ratio Coeff C NC b h y

Force Cables WF kN kN

BS 8100- Part 4 Mean Site Wind Speed Vs

VsxSbxSdxSc

Where 3 sec Gust wind speed

For Zone

Relative Hourly Mean Wind speed

Wind factor

Altitude factor

5 : S d'1

VsxSoxgn

Terrain Factor

Country Terrain

S 0 = S c'(1 + S h) Where S c': Fetch Factor = 1

6 (Cl 3

180 Kmph

Wind Pressure =

59 x V z

84 kN/m2

For Servisibility Condition Vk

W k operational =

V b x Sa x So 33 x 75

59 x 40

3364 N/m2

364 kN/m2

R AW = C N K A A A Sin 2 q CN For Power cables CN Option1 0

Dia(m) 0

W k KN/m2 Force /kN/m R AW Perational SurvivalOperational Survival 0

ANTENNA ANCILLARIES R AW = C A K A A A MW Dishes At height/(m) Nos 36

Wk kN/m2 Antenne Force/Antennae kN KA CA R AW Wt Dead(kN) OperationalSurevival Area (m2) Operational Survival 1

2 180 1

R AW = C A K A A A CA

Cellular Antennas ( GSM ) At Height (m) 37

Wk kN/m2

Antenne K A

BxH (Kg) (kN) OperationalSurevival Area/(m2) 6

Force/Antenne kN R AW Operational Surevival 1

Structural components AS Structural Pipe/Rod Length No Dia

Section-01 (Bellow32m)

Anciliary Components ( Data Cable ) AA Area Dia No Length Area m2 (m2) (m) (m) 0

Width Height Solidity Drag (m) (m) Ratio Coeff C NC b h y

MW Dishes

OVER TURNING STABILITY CALCULATION

YPlatfor Stability Circle

X Platform YC

YTWR Y=0

LF LF Cos 60

LF Sin 60 Figure 8

Center of Gravity Without Concrete Weight Tower+Head Load 1533 Kg Shelter 0 Kg Tower Frame 289 Kg 2 Front Poly Pts(Arm) 576 Kg 2 Rear Poly Pts(Arm) 0 Kg Base Struc Wt3045 Kg Wt of Accessories0 Kg Resultant Wt 5443 Kg

Force 15,034 0 2,835 5,651 0 29,871 0 53,391

Tr M (J) 7

52 E+03 0

00 E+00 8

51 E+02

70 E+04 0

00 E+00 5

08 E+04 0

00 E+00 4

22 E+04

Center of Gravity of the system with Concrete Weight Force Y Tr M (J) Tower+Head Load 1533 Kg 15,034 0

31 E+05

Turning Moment = WF Per Segment x No of Segments x Elevation

Total Wind Turning Moment = 1705

Leverage Required =

Total Wind Turning Moment / Total Wt of the System 5

Y Platform = X Platform =

(Length of Guy Arm)

68 Degrees

(Center of gravity of system with concrete Blocks)

- Y CG)}

71 Degrees

X Platform / Sin

Comparisan to select the side Most likely to fail Side Leverage

(Y platform

- Y CG) 5

70 Failure

C legs leverage

Radius of Stability Circle

(Y CG + L'x Cos 60)

80 Failure

Concrete Blocks Required W 53

391 KN 0

790 m Y CG

6 72 KN

C 186 KN

Taking Moments about A Over turning moment= = Moment of self Weight = = Resultant Moment = = Required Weight

Taking moment Overabout Turning Moment Moment of Self WtResultant Moment Required Wt @ KNm KNm KNm KN about A 1674 278

15 1395

4 Over Lap

A (Near Goose Neck)

68 Side

B ( Under Twr)

96 Goose

64 Legs

C (Arm 1)

C (Arm 2)

23800 0

Center of Gravity

Velocity

Section 1

Perational

Section 2

Section 3

Section 4

Section 5

mm mm mm Nos Nos Kg Kg Kg Kg Kg Kg Ton m m m m m m m m

GSM Antennae 13

kN kN kN kN kN kN kN kN

V k = V b x Sa x So

08 0 75

504 3363

Survival

Ratio 1

Operational Wk Pipes kN/m2 kN

Force Cables WF kN kN

6 1x1 1

Wind Force effect Description Area of Segm Operationl GSM Antennae 0

Post Desaster Neutral Structure In Sri Lanka1

131 m2 1

020 m2 0

Section 3

Survival

Section 4

Section 5

60 4843

Sa Altitude Factor Ss VsxSbxSdxSc Sc Sh Sd S 0 = S c'(1 + S h) Gamma Partial SF Vz=VsxSoxgn N/m2 kN/m2

Wind Pressure

Cable s'A with shy A no shy

Prof Has Considered 16mm Rods 0

ce effect Survival Repetition WF per seg Elevation WF n Seg Turning Moment of Segments KN m KN KNm 1 13

4252 37

425 503

2936 36

294 298

3143 32

21 16 0

5968 32

534 311

27 18 0

5218 25

262 236

64 18 0

5390 18

567 176

52 18 0

5431 11

640 109

42 21 0

45 1705

52 KmPH

494742 5

247771 1

367034 2

596099 4

539735 4

68949 4

725192 7

200 x 3

200 1,928

Wind Force Truning Moment = Gap between beams

Force on beam for the criticle case = =

89 N 87

374199 Ton

Total weight

Load on One Beam

Number of points the beam is Suppoted from bottom Load on Beam

24,761 Kg

374 Ton 43

687 Ton

Gravitational Acc

812 m/s2

Analysis for Bending failure Section Moduli Steel Density

310 N/mm2

3 E+08 Pa

00 Kg/m3

Considering the critical situation arisen while lifting from lifting hooks Length L

000 m tf

Thickness t 0

Unit length Weight Beam weight

0 Kg/m 306

Shearing stress X sec Area Allowed Max S Force

UDL of dead load On One Beam Total weight = On one Beam = No of Segments = Linear weight Intensity Per Segment =

0069 m3 2

074 E+06 N

81 Kgs/m

Table 3

00 m 31

00691 1 0

15 m 31

00691 2 0

30 m 31

00691 3 0

45 m 31

00691 4 0

60 m 31

00691 5 0

75 m 31

00691 6 0

90 m 31

00691 7 1

05 m 31

00691 8 1

20 m 31

00691 9 1

35 m 31

00691 10 1

50 m 31

00691 11 1

65 m 31

00691 12 1

80 m 31

00691 13 1

95 m 31

00691 14 2

10 m 31

00691 15 2

25 m 31

01171 16 2

40 m 31

01171 17 2

55 m 31

01171 18 2

70 m 1389

01171 19 2

85 m 1389

01171 20 3

00 m 1389

01171 21 3

15 m 1389

01171 22 3

30 m 1389

Moment of Inertia of the beam Section H W MI Web MI Fla 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 5

76 E-08 0

45 E-06 5

76 E-08 0

45 E-06 5

76 E-08 0

45 E-06 5

76 E-08 0

45 E-06 5

76 E-08 0

45 E-06 5

76 E-08 0

45 E-06 5

76 E-08 0

45 E-06 5

76 E-08

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 4

24 E-05 4

24 E-05 4

24 E-05 4

24 E-05 4

24 E-05 4

24 E-05 4

24 E-05 4

24 E-05

29 1389

00 10748

01171 0

01171 0

01171 0

00691 0

00691 0

00691 0

00691 0

00691 0

00691 0

00691 0

00691 0

00691 0

00691 0

00691 0

00691 0

00691 0

00691 0

Table 3

00 m 0 0