PDF- -proyecto básico y de ejecución de cubierta metálica sobre pista - Calculo de marquesina 5-5-2011

Description

INTRODUCCIÓN

El cálculo de la estructura de la marquesina se lleva a cabo por etapas partiendo del cálculo de los elementos que soportan inicialmente las cargas y hasta llegar a la estructura principal sustentadora

Así pues,

se comienza calculando las chapas y las correas de apoyo directo de las chapas de cubierta de la marquesina,

pasando después al cálculo de la estructura principal sobre la que descansan estas correas

Finalmente,

con los resultados obtenidos se dispone de los datos necesarios para calcular la cimentación de la marquesina

El cálculo de la cimentación se lleva a cabo en el anejo correspondiente a cálculo de cimentaciones de este proyecto

CHAPAS DE CUBIERTA

Las chapas de cubierta no se calculan por tratarse de materiales estandarizados para cubrimiento de vanos

Simplemente se tiene en cuenta colocar apoyos para estas chapas (correas) cada metro de longitud,

de manera que el fabricante garantiza que para este vano las chapas resisten los tipos de carga usuales en cubiertas

CÁLCULO DE LAS CORREAS 3

CARGAS QUE INTERVIENEN

PESO PROPIO DE LA CUBIERTA

La cubierta de chapa de acero galvanizado de 0,6mm de espesor incluyendo peso propio de las correas y ganchos de sujeción a las mismas,

según los valores usuales que declara la experiencia en este tipo de cubiertas para una geometría similar en cuanto a separación de apoyos (ver epígrafe 3

47kg/m2

Este peso supone un peso por unidad de longitud de cubierta de (las correas están separadas 1m según planos,

por lo que se considera que cada una recibe la carga de 1m de anchura de chapas,

quedando incluso del lado de la seguridad en cuanto a las correas extremas de los bordes,

que reciben la mitad de carga en una situación supuesta isostática y que es asimilable a la que sufre el conjunto de las correas por carga sobre ellas de las chapas): 47kg/m2 * 1m = 47kg/m

CARGA DE NIEVE

Según la norma MV-101,

Acciones en la Edificación: Se considera una sobrecarga de nieve de 120kg/m2 sobre el techo de la marquesina como si fuese horizontal

Esto da un peso por unidad de longitud de: Anchura unitaria considerada: 1m

Carga: 120kg/m2 1m * 120kg/m2 = 120kg/m

CARGA DE VIENTO

Calculado según norma MV-101,

Acciones en la Edificación: Empuje del viento = p = c'* w Donde: c'= coeficiente eólico de sobrecarga total en una construcción

w = presión dinámica en kg/m2

a partir de la velocidad máxima del viento de 20 nudos (37,04km/h) en la dirección N-S,

que es la que afecta a la marquesina (dato extraído del anejo de meteorología),

como: w = v2/16 Con v en m/s: w = (37,04km/h * 1000m/km * 1/3600h/s)2 /16 = 6,6kg/m2 Y c'se obtiene según la norma MV-101 para “construcción prismática de planta rectangular o combinación de rectángulos” como c'= 1,2 De donde: p = 1,2 * 6,6 = 7,9 kg/m2 Se considera que esta carga actúa sobre la proyección del alzado de las chapas de cubierta de la marquesina,

que se aproxima a un rectángulo de 16,5m de anchura (longitud de la marquesina) y 1,1m de altura (altura de la proyección vertical de la marquesina)

Por tanto,

se tiene un empuje total sobre la marquesina,

a la altura de la mitad del alzado de la cubierta,

de: 7,9kg/m2 * 16,5m * 1,1m = 143kg Esta carga,

repartida por unidad de longitud de la marquesina y teniendo en cuenta que la inclinación de la marquesina es de 8º,

da una componente ortogonal sobre la cubierta de la marquesina de: 143kg / 16,5m * Sen8º = 1,2kg/m Esta carga se puede dar tanto en sentido descendente (viento por el exterior de la marquesina) como en sentido ascendente (viento por el interior de la marquesina)

CARGA DEL SISMO

En los cálculos de la marquesina no se considerará carga de sismo dado que no es una estructura que tenga riesgos potenciales de peligro en caso de sismo

RESUMEN DE CARGAS

Como cargas permanentes,

se tiene el peso propio dado en 2

de 47kg/m Como cargas accidentales,

de valor 120kg/m Y la de viento,

COEFICIENTES DE VALORACIÓN DE ACCIONES

Los coeficientes utilizados para el cálculo son:

minoración de la resistencia del acero: 1,15 mayoración de las cargas permanentes: 1,33 mayoración de las cargas accidentales: 1,0 mayoración de la acción del viento en caso desfavorable: 1,5 mayoración de la acción del viento en caso favorable: 0

CÁLCULO EN FLEXIÓN DE LAS CORREAS

En la situación más desfavorable,

se tiene una carga lineal uniformemente repartida actuando sobre las correas que se apoyan a su vez en la estructura de 47kg/m * 1,33 + 1,2kg/m * 1,5 + 120kg/m * 1 = 184,3kg/m según el siguiente esquema (ver planos):

Correa 184,3kg/m Apoyos de estructura 2,75m 5,50m

Reacciones en los apoyos: Por la geometría de la estructura (simétrica en cuanto a cargas sobre cada apoyo) y a pesar de su hiperestatismo,

se observa directamente que las reacciones de los apoyos toman iguales valores en los tres casos: 184,3kg/m * 16,5m / 3 = 1

Momentos flectores: La ley de flectores para las correas es simétrica respecto al centro y,

comenzando por el extremo izquierdo de la correa,

-q*x2/2 =

014x – 2

697kg*m

698kg*m

697kg*m

0,55kg*m

Nota: el valor de o,55 se debe a error de redondeo

Realmente el valor en los puntos correspondientes es cero

PERFILES EMPLEADOS PARA LAS CORREAS

CÁLCULO

El acero de los perfiles empleados para las correas será del tipo A42 según Norma NBE-EA-95,

Estructuras de acero en edificación,

600kg/cm2

Con este límite,

y teniendo en cuenta el coeficiente de minoración de 1,15 señalado en 3

para diferentes perfiles tubulares,

los siguientes valores (se estudian perfiles en diámetros y espesores comerciales según los valores de geometría de tuberías de las series normalizadas según UNE 19-011-86,

eligiendo para cada diámetro el espesor mínimo disponible que permite que la tensión máxima quede por debajo del límite elástico): σ = M*y/I donde σ = tensión en la fibra más alejada M = momento flector sobre la sección y = distancia de la fibra neutra a la fibra más alejada (radio del tubo) I = momento de inercia de la sección,

calculado para perfil tubular como I = ¼*Π*(Rext4-Rint4)

Donde Rext = radio exterior de la sección Rint = radio interior de la sección

Correas tubulares Diámetro exterior (mm)

Espesor de pared (mm)

I (cm4)

M (kg*m)

Peso (kg/ml)

En función de estos perfiles y procurando elegir elementos livianos para hacer reducida la carga sobre la estructura que se calcula posteriormente (redundando también esto en la economía de la estructura),

así como según el criterio estético que se ha dado a la marquesina y que se tiene en cuenta para el cálculo en este epígrafe (ver planos),

se eligen como correas los siguientes perfiles:

-Correas generales: Perfil tubular de 108mm de diámetro exterior y 3,6mm de espesor de pared según la tabla anterior

En este caso,

el diámetro se elige mayor que para las correas generales por ser este el necesario para alojar e integrar en la estructura las luminarias elegidas en el cálculo luminotécnico de la instalación (según anejo correspondiente)

Asimismo,

el espesor se elige de 2,9mm frente al estrictamente necesario según la tabla anterior

Esto es así como garantía ante la necesidad de seccionar los tubos para introducir en ellos las luminarias según se ha descrito

CÁLCULO DE LA ESTRUCTURA: VOLADIZOS Y COLUMNAS

BASES DEL CÁLCULO

El cálculo se lleva a cabo considerando cada una de las tres subestructuras constituida por unión de una columna inclinada y una viga en voladizo según planos

Las cargas que actúan sobre cada una de estas tres subestructuras es la misma por el mismo fundamento que se ha expresado en el epígrafe 3

: cada una de las tres subestructuras se constituye en uno de los tres apoyos allí mencionados,

recibe las cargas correspondientes a una longitud de marquesina de 5,5m (ver planos)

Para todo lo referente al cálculo de la estructura metálica,

se tiene en cuenta la Norma NBE-EA-95,

Estructuras de acero en edificación

CARGAS QUE INTERVIENEN

PESO PROPIO DE LA ESTRUCTURA Y LA CUBIERTA

El peso propio de la cubierta es,

para cada subestructura según lo especificado en 4

supone una carga lineal uniformemente repartida sobre el voladizo de 47kg/m2 * 5,5m = 258,5kg/m

En cuanto al peso propio de la estructura,

a priori se supone para el cálculo que se emplean perfiles IPN-300,

que tienen un peso por unidad de longitud de 54,2kg/m Posteriormente,

se considerará si es necesario recalcular para diferente perfil en caso de que el cálculo así lo arroje

CARGA DE NIEVE

Según la norma MV-101,

Acciones en la Edificación: Se considera una sobrecarga de nieve de 120kg/m2 sobre el techo de la marquesina como si fuese horizontal

Esto da un peso por unidad de longitud para cada subestructura según 4

de: Anchura considerada: 5,5m Carga: 120kg/m2 5,5m * 120kg/m2 = 660kg/m

CARGA DE VIENTO

Según el cálculo levado a cabo en el epígrafe 3

Acciones en la edificación,

para la marquesina de tiene una carga de viento cuya componente horizontal sobre la cubierta resulta ser de 7,9kg/m2 * 1,1m de altura expuesta= 8,7kg/m La componente ortogonal a la superficie de cubierta de esta acción resulta ser de 8,7kg/m * Sen8º = 1,2kg/m

CARGA DEL SISMO

En los cálculos de la marquesina no se considerará carga de sismo dado que no es una estructura que tenga riesgos potenciales de peligro en caso de sismo

RESUMEN DE CARGAS

Como cargas permanentes,

se tiene el peso propio dado en 4

que para el voladizo resulta ser de 258,5kg/m + 54,2kg/m = 312,7kg/m De igual forma,

para la columna resulta ser de 54,2kg/m Como cargas accidentales,

se tienen la de nieve sobre el voladizo,

de valor 660kg/m Y la de viento sobre el voladizo,

de +- 8,7kg/m en horizontal +- 1,2Kg/m de componente ortogonal al voladizo

COEFICIENTES DE VALORACIÓN DE ACCIONES

Los coeficientes utilizados para el cálculo son:

minoración de la resistencia del acero: 1,15 mayoración de las cargas permanentes: 1,33 mayoración de las cargas accidentales: 1,0 mayoración de la acción del viento en caso desfavorable: 1,5 mayoración de la acción del viento en caso favorable: 0

LEYES DE ESFUERZOS

LEY DE MOMENTOS FLECTORES

En todo caso,

las cargas actuantes son lineales uniformemente repartidas,

para voladizo y comenzando por el extremo libre,

se tiene: Mf = q * x2 / 2 Por tanto,

para la parte de voladizos de la estructura se tiene,

y teniendo en cuenta la inclinación de 8º de la cubierta: Mf = (312,7kg/m*1,33*Cos8º + 660kg/m*1*Cos8º + 1,2kg/m*1,5*Cos8º) * x2 / 2 = 1

se tiene un valor extremo en la unión a la columna de: 1

se tiene un valor extremo en la unión a la columna de: 1

un momento flector igual a la diferencia entre los anteriores: 18

891kg*m

el momento flector resulta ser,

y contando con la inclinación de 82º de la columna,

de manera que para la base se tiene un momento flector de: 17

891kg*m

826kg*m

065kg*m

980kg*m

LEY DE ESFUERZOS CORTANTES

Derivando las leyes anteriores,

se obtienen los siguientes valores de esfuerzo cortante: Para la parte de voladizos de la estructura se tiene: Q = 1

Por otra parte,

desde la unión a la columna y hacia abajo sobre esta,

el cortante resulta ser de: Q = 7,54 * y Donde “y” es la longitud de columna desde la unión a los voladizos hacia abajo

Para la base de la columna alcanza un valor de 7,45 * 4,75 = 35,4kg

Los resultados anteriores tienen la siguiente configuración: 6

LEY DE ESFUERZOS AXILES

En función de la ley anterior de esfuerzos cortantes y teniendo en cuenta el peso de la columna de acero,

se obtiene para los esfuerzos axiles la siguiente ley sobre la columna (no se dan axiles sobre los voladizos): N = 6

350kg + 1

350kg + 1

974kg = 8

350kg + 1

Los resultados anteriores tienen la siguiente configuración:

DEFORMADA

Aplicando los teoremas de Mohr al cálculo de giros (positivos en sentido contrario a las agujas del reloj) y flechas (positivas de izquierda a derecha y de abajo a arriba),

y a partir de la ley de flectores que actúan sobre la estructura,

Extremo del voladizo mayor:

467kg*m2

-Voladizo menor: ∫01,85 1

126kg*m2

622kg*m2

-Suma: 37

826 + 82

622 = 118

b) Resultado anterior partido por el producto del límite de elasticidad del acero (E = 2

662E4 / (2

-Desplazamiento horizontal: a) Suma de momentos de las áreas de momentos flectores con respecto a la línea horizontal por el punto en cuestión (centro de gravedad del área de estradós parabólico a ¾ del extremo en voladizo

dimensiones tomadas de los planos

del área de momentos supuesto en el centro por la similitud de la ley a un rectángulo):

042kg*m3

151kg*m3

108kg*m3

000kg*m3

b) Resultado anterior partido por el producto del límite de elasticidad del acero (E = 2

000E6 / (2

-Desplazamiento vertical: a) Suma de momentos de las áreas de momentos flectores con respecto a la línea vertical por el punto en cuestión (centro de gravedad del área de estradós parabólico a ¾ del extremo en voladizo

dimensiones tomadas de los planos

del área de momentos supuesto en el centro por la similitud de la ley a un rectángulo):

569kg*m3

150kg*m3

-Columna: 82

932kg*m3

350kg*m3

b) Resultado anterior partido por el producto del límite de elasticidad del acero (E = 2

350E6 / (2

-29,6cm

Extremo del voladizo menor:

467kg*m2

126kg*m2

622kg*m2

-Suma: 37

826 + 82

622 = 118

b) Resultado anterior partido por el producto del límite de elasticidad del acero (E = 2

662E4 / (2

-Desplazamiento horizontal: a) Suma de momentos de las áreas de momentos flectores con respecto a la línea horizontal por el punto en cuestión (centro de gravedad del área de estradós parabólico a ¾ del extremo en voladizo

dimensiones tomadas de los planos

del área de momentos supuesto en el centro por la similitud de la ley a un rectángulo):

797kg*m3

100kg*m3

669kg*m3

b) Resultado anterior partido por el producto del límite de elasticidad del acero (E = 2

669E6 / (2

-Desplazamiento vertical: a) Suma de momentos de las áreas de momentos flectores con respecto a la línea vertical por el punto en cuestión (centro de gravedad del área de estradós parabólico a ¾ del extremo en voladizo

dimensiones tomadas de los planos

del área de momentos supuesto en el centro por la similitud de la ley a un rectángulo):

207kg*m3

-Voladizo menor: 1

248kg*m3

248 = +244

230kg*m3

b) Resultado anterior partido por el producto del límite de elasticidad del acero (E = 2

230E6 / (2

Unión de los voladizos y la columna:

622kg*m2

-Suma: 82

b) Resultado anterior partido por el producto del límite de elasticidad del acero (E = 2

622E4 / (2

-Desplazamiento horizontal: a) Suma de momentos de las áreas de momentos flectores con respecto a la línea horizontal por el punto en cuestión (para la columna,

del área de momentos supuesto en el centro por la similitud de la ley a un rectángulo):

408kg*m3

408kg*m3

b) Resultado anterior partido por el producto del límite de elasticidad del acero (E = 2

408E6 / (2

-Desplazamiento vertical: a) Suma de momentos de las áreas de momentos flectores con respecto a la línea vertical por el punto en cuestión (C

del área de momentos supuesto en el centro por la similitud de la ley a un rectángulo):

885kg*m3

-Suma: +27

885kg*m3

b) Resultado anterior partido por el producto del límite de elasticidad del acero (E = 2

885E6 / (2

La configuración de la deformada de la estructura queda pues como sigue:

Los valores de giros y desplazamientos par acada punto señalado son los consignados en los párrafos anteriores

DIMENSIONAMIENTO DE PERFILES

VOLADIZOS

Los voladizos están sometidos a flexión simple según se desprende del cálculo del epígrafe 4

Se trata de dimensionar el perfil necesario para los voladizos de manera que soporten los momentos flectores calculados y los cortantes correspondientes

Cálculo a flexión: tensiones normales

Para el cálculo se lleva a cabo una determinación del momento flector máximo que puede soportar cada sección normalizada de perfil IPN,

y se compara con los momentos flectores que se dan en cada punto del voladizo mayor,

comenzando por el extremo en voladizo

σ = M*y/I donde σ = tensión en la fibra más alejada,

supuesta igual al límite elástico del material considerado dividido por el coeficiente de minoración resistente (2

con valores tomados del prontuario de estructuras metálicas del CEDEX

-Momento de cálculo en cada sección: se calcula según se ha visto en el epígrafe 4

Flectores máximos admisibles por perfiles comerciales

IPN 140 160 180 200 220 240 260 280 300 320 340 360 380 400 450 500 550 600

I (cm4) 573 935 1450 2140 3060 4250 5740 7590 9800 12510 15700 19610 24010 29210 45850 68740 99180 139000

(kg*m) 1850 2641 3641 4836 6287 8004 9979 12252 14765 17670 20872 24621 28559 33007 46054 62141 81508 104713

Flectores en las secciones del voladizo mayor

x (m) 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 5,95

M calculado (kg*m) 133 534 1201 2134 3335 4802 6537 8538 10805 13340 16141 18891

En función de estos resultados,

el perfil ideal que se adaptaría a todas las situaciones de solicitación podría seguir la configuración del esquema siguiente,

si bien constructivamente no sería factible y por tanto se opta por materializar un perfil construido mediante platabandas según la segunda parte del esquema de la figura:

120 100

180 160

240 200

280 260

320 300

Sección ideal

Sección constructivamente aplicable 100

La sección constará,

por comparación con las dimensiones de un perfil IPN-340,

En cuanto al voladizo más corto,

y dado que los momentos flectores sobre este son notablemente inferiores a los desarrollados en el voladizo mayor,

se opta por colocar también un perfil con inicio de 340mm y final de 100mm,

de manera que aunque se sobrepasan las exigencias de resistencia las dimensiones se armonizan con el diseño (ver planos)

Cálculo a cortante: tensiones tangenciales

El cálculo de las tensiones tangenciales se lleva a cabo para las secciones ideales de IPN consideradas en el epígrafe anterior,

calculando a nivel de su fibra neutra por se la seeción más reducida

Se tiene así: Τ= Q * Me / (b * I) Donde: Τ= tensión tangencial Q = esfuerzo cortante Me = momento estático respecto al eje de la sección b = espesor de la sección a la altura de la fibra de cálculo (como se ha dicho,

I = momento de inercia de la sección Así,

en función de los valores proporcionados por el prontuario de estructuras metálicas del CEDEX y para un valor de tensión máxima de T = 2

260kg/cm2,

Cortantes máximos admisibles por perfiles comerciales

IPN 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 450 500 550 600

I (cm4) 77,8 171 328 573 935 1450 2140 3060 4250 5740 7590 9800 12510 15700 19610 24010 29210 45850 68740 99180 139000

Me (cm3) 11,4 19,9 31,8 47,7 68 93,4 125 162 206 257 316 381 457 540 638 741 857 1200 1620 2120 2730

espesor (cm) 0,39 0,45 0,51 0,57 0,63 0,69 0,75 0,81 0,87 0,94 1,01 1,08 1,15 1,22 1,3 1,37 1,44 1,62 1,8 1,9 2,16

(kg) 6015 8739 11888 15475 19577 24209 29018 34578 40565 47448 54826 62782 71145 80163 90304 100324 110923 139888 172614 200886 248550

Frente a estos valores,

se pueden comparar los que se dan en la estructura según el cálculo llevado a cabo en el epígrafe 4

y particularizando para cada sección desde el extremo en voladizo según Q = 1

067,2 * x:

Cortantes en las secciones del voladizo mayor

x (m) 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 5,95

Q calculado (kg) 534 1067 1601 2134 2668 3202 3735 4269 4802 5336 5870 6350

IPN asignado en 4

Y se comprueba por tanto que todos los perfiles dimensionados por flexión resisten a cortante,

y asimismo el perfil constructivo diseñado,

que excede los valores de los perfiles IPN

Por las mismas consideraciones y en base a lo comentado en 4

queda comprobada también la resistencia del voladizo menor a cortante

Ala comprimida

Para decidir si el ala comprimida no necesita ser comprobada a pandeo local,

de la Norma EA-95 se cumple o no que: b/e

Calculo de Mayores Gastos Generales

Seguro de Gastos Médicos Mayores Te brindamos la seguridad

segurosdegastosmedicos pdf AXA Condiciones generales b) Gastos Médicos Mayores cubiertos con Periodo de Espera 18 1 A partir de 4 meses 18 2 A partir de 10 meses 19 3 A partir de 12 meses 20 4 A partir de 24 meses 20

Calculo de medición y propagación de errores _ FISICA GENERAL.pdf

Medida, control y propagación del error

PDF Propagación de errores Mediciones y cálculo de la densidad de un unsa edu ar passamai infotp2 pdf PDF Propagación de Errores UV uv es zuniga 3 2 Propagacion de errores pdf PDF propagación de

Calculo de Metrados en Revit

DISEÑO GEOMETRICO DE CARRETERAS DG-2014

sjnavarro files wordpress 2011 08 movimiento Los cambios físicos y geotécnicos que se experimenten en las laderas de los tramos en cortes y los taludes de las explanaciones La reducción de la resistencia a cortante del suelo debido a la disminución de la presión

CALCULO DE MONTOS MAXIMOS A OTORGAR.xlsx

Ley de tasas de interés y usura - BCU

PDF anexo 02 procedimiento para calcular el monto del bono de Mef mef gob pe Anexo 2002 Procedimientos Calculo Bono pdf PDF para el cálculo del límite de crédito ICM Crediticmcredit ebook 18 05

Calculo de Numero de Puntos GPS Para La Correccion Geometrica

Tema 12:Aplicaciones Topográficas del GPS - OCW UPM

PDF TEMA 5 – POLIGONACIÓN, CÁLCULOS DE COORDENADAS Y bibliotecacpa ar greenstone collect facagr index doc pdf PDF tesis completa calculo del número de puntos de Repositorio USFQrepositorio usfq edu ec bitstream 23000 1818 1 104254 pdf

Cálculo de Operación Múltiple Del Costo Comercial (1)

MÚSICA Y MATEMÁTICAS La armonía de los números 12 - fespm

PDF Cálculo mental, cálculo estimativo y uso de la calculadora biblioteca unirioja es tfe e TFE001708 pdf PDF Principales características Calculadora de 105 pasos de csantaku cl image data documentos calculadoras taku 960 pdf PDF cálculo diferencial e integral

CÁLCULO DE PÉRDIDAS DE CARGA EN TUBERÍAS

Diseño del Sistema de Tuberías y Cálculo de las Bombas

PDF fórmulas para el cálculo de pérdidas de carga en tuberías UCLM previa uclm es area ing rural Prob FormulasHidraulica pdf PDF Tema 8 Fórmulas empíricas para el cálculo de pérdidas de UCLM

Calculo de Potencia de Un Motor Para Una Cinta Transportadora

FÓRMULAS EMPÍRICAS DE TRACCIÓN

15 Abr 2017 3 1 Sensores y parámetros del motor requeridos para el cálculo del torque y potencia 3 1 1 Presión Media Efectiva (P M E) Es aquella presión  del 5 , en motores de inducción asincrónicos trifásicos, la potencia solicitada por la

Calculo de PU de acarreo

DIRECCION GENERAL DE SERVICIOS TECNICOS Licitación Pública

solucionesespeciales CargaYAcarreo pdf Carga y acarreo de materiales en la obra La carga es la maniobra que se realiza para depositar los materiales producto de trabajos varios como la d molición, la excavación o la explotación de canteras de préstamo por medio de un vehículo (camión) o

Home back Next
<