PDF- inhalation exposure calculation,time weighted -IHT400 Calculation - Calculation

Description

### BS 8100- Part 4 Kgs Mean Site Wind Speed Vs

VB xSbxSdxSc

Where 3 sec Gust wind speed

For Zone

180 Kmph

## Velocity Hr Mean W S Cl 3

• 4 : S a = 1 + 0
• 001 D'When D'is 100m

• = = = =

### Section 4 Section 5

MW MW Dia GSM A1 B1 C (Arm 1)

## Direction factor Cl 3

5 : S d'1

• 0 Seasonal factor Cl 3
• 6 & Annex E : S s'1

Terrain Factor

### Country Terrain

S 0 = S c'(1 + S h) Where S c': Fetch Factor = 1

• 3 S h : Topography Factor =

6 (Cl 3

• 4 & Annex H)

## GSM Antennae 0

• 6 MW Dishes GSM Antennae 0
• 6 MW Dishes Section 1 Section 1
• 2 Section 2 Section 3 Section 4 Section 5

Trun Mome

242 Kmph

# For Survival Condition

W k (W pressure) =

56 x V z 2

2525 N/m2

525 kN/m2

# V b x Sa x So 24

455 x 56

### W k operational =

201 Kmph

56 x Vk 2

1753 N/m2

• 753 kN/m2 Selected Factor

## Zone 1 Multi Factor0

• 6 W k KN/m2

Force /kN/m

### Dia(m) 0

R AW Operational SurvivalOperational Survival 0

ANTENNA ANCILLARIES R AW = C A K A A A MW Dishes At height/(m) Nos 33

Wk kN/m2 Antenne Force/Antennae kN CA R AW Wt Dead(kN) OperationalSurevival Area (m2)K A Operational Survival 1

2 180 1

## BxH (Kg) (kN) OperationalSurevival Area/(m2) 6

Force/Antenne kN R AW Operational Surevival 1

Operational Wind Speed

Structural components AS Structural Pipe/Rod No Dia

• (m) Section-01 2
• 0483 (Above32m) 2

# Section-01 (Bellow32m)

## Section-02

### Section-05

Anciliary Components ( Data Cable ) AA

### Length Area Dia No (m2) (m) 0

#### Width Height Solidity Drag (m) (m) Ratio Coeff C NC b h y

Operational Wind Force Wk Pipes kN/m2 kN

Length Area m2 (m) 0 0

Stability Circle

YC LF Cos 60

### LF LF Sin 60

Checking the side most likely to fail

Center of Gravity Without Concrete Weight Tower+Head Load 1533 Kg Shelter 0 Kg Tower Frame 289 Kg 2 Front Poly Pts(Arm) 576 Kg 2 Rear Poly Pts(Arm) 0 Kg Base Struc Wt3045 Kg Wt of Accessories0 Kg Resultant Wt 5443 Kg

Tr M (J) 7

52 E+03 0

00 E+00 8

51 E+02

70 E+04 0

00 E+00 5

08 E+04 0

00 E+00 4

22 E+04

Option1 Option2

# Dia(m) 0

W k KN/m2 Force /kN/m R AW Operational SurvivalOperational Survival 0

Center of Gravity of the system with Concrete Weight Force Y Tr M (J) Tower+Head Load 1533 Kg 15,034 0

• 52 E+03 Shelter 0 Kg 0 4
• 00 E+00 Tower Frame 289 Kg 2,835 0
• 51 E+02 2 Rear Poly Pts(Arm) 0 Kg 0 6
• 00 E+00 2 Nos Concrete @ A 10800 Kg 105,948 6
• 36 E+05 2 Nos Concrete @ B3240 Kg 31,784 0
• 00 E+00 2 Nos Concrete @ C 15800 Kg 154,998
• 65 E+05 2 Front Poly Pts(Arm) 576 Kg 5,651
• 70 E+04 Base Struc Wt3045 Kg 29,871 1
• 08 E+04 Wt of Accessories0 Kg 0 0
• 00 E+00 Resultant Wt 35283 Kg 346,121 0

13 E+05

Turning Moment = WF Per Segment x No of Segments x Elevation

# Total Wind Turning Moment = 1576

• 07 KNm Total Wt of the System = Leverage Required =
• 346 KN Total Wind Turning Moment / Total Wt of the System 4

Y Platform = X Platform =

## (Length of Guy Arm)

• -1{ ( L'x Sin 60) / (Y platform + Lx Cos60)}

68 Degrees

# (Center of gravity of system with concrete Blocks)

• -1{ ( X Platform) / (Y platform

- Y CG)}

71 Degrees

## Comparisan to select the side Most likely to fail Side Leverage

• 03 Failure A legs leverage

(Y platform

- Y CG) 5

88 Stable

# Radius of Stability Circle

## (Y CG + L'x Cos 60)

62 Failure

Concrete Blocks Required W 53

391 KN 0

790 m Y CG

6 72 KN

C 186 KN

Taking Moments about A Over turning moment= = Moment of self Weight = = Resultant Moment = = Required Weight

• 186 x 9 1674 KNm W x ( 6
• - Y CG ) 278
• 15 Over turning moment
• - Moment of self Weight 1395
• 85 Resultant Moment / ( 6 + 3) 155

Taking moment Overabout Turning Moment Moment of Self WtResultant MomentRequired Wt @ KNm KNm KNm KN about A 1674 278

15 1395

• 09 C about C

4 Over Lap

A (Near Goose Neck1)

B ( Under Twr1)

29 Goose

89 Side

79 Legs

# B ( Under Twr2)

### C (Arm 2)

#### Center of Gravity

• m/s mm mm
• mm mm 0

0483 mm 2

0 Nos 1

2 Nos 6

• 0 Nos 5400 Kg 1620 Kg 7900 Kg 5400 Kg 1620 Kg 7900 Kg 29

84 Ton 34

m kN kN kN/m kN/m kN/m kN/m kN/m kN/m

# Perational Vb

1 SL 24

## Pitch 4 Pitch 5

#### Post Desaster 1

Survival Vs 24

V k = V b x Sa x So

#### Altitude Factor

VsxSbxSdxSc Sc Sh Sd

08 0 55

• 525 Ratio 1

### N/m2 kN/m2

Wind Pressure

Survival Wk kN/m2

25 m 20

3240 2400

6480 4800

• over lap

0 16000

5473 24

## Wind Force effect UDL Description Area Repetition Operational Survival of Segments kN kN m/hr

### Neutral Structure In Sri Lanka

Mean Wind Speed GSM Antennae

• 6 MW Dishes

160 120

Section 2

055 m2 0

# Elevation App Loads m ISURU 34

8596 33

0035 32

2563 32

2563 25

2703 18

2711 11

0454 19

725192 82

## Results

WIND SPEEDS Mean Wind Spped Mean Wind Speed = 180 km/h for Zone 1 Corresponding Hourly Mean Wind Speed = 24

455 m/s

### Clause 3

VS  Vb S a S s'S d'Vs = Mean Wind Speed Vb = Basic Wind Speed (Hourly Mean Wind Speed) Sa = Altitude Factor Ss = Seasonal Factor Sd = Directional Factor

# Vs = Clause 3

S a  1 + 0

• 001  Δ = Elevation from the Mean See Level Δ=

001x100

• 5 & Table 1

# Clause 3

• 6 & Annex E-1

Reference

## Effective Wind Speed Clause 3

V z  VS S o g v Vz = Effective Wind Speed VS = Mean Wind Speed So = Terrain Factor γv = Partial Safety Factor for Wind Speed VS =

### Clause 3

#### For an Open Country Terrain

S o  S c'1 + S b  Sc = Fetch Factor Sb = Topography Factor Figure 3

## Clause 3

• 6) Figure 1

considering Upper Graph Performance γv = Vz = 26

## Reference

### Results

#### Charasteristic Wind Speed Clause 3

Vk  Vb S a S o Vk = Charasteristic Wind Speed Vb =

Description WIND RESISTANBCE

# Results

Section Members Clause 4

RM  K q C N As RM = Total Wind Resistance Kθ = Wind Incident Factor CN = Overall Normal Drag Coefficient As = Total Area Projected on the Concerned Face 1

Face of 0

• 4 m Segments of the Topmest Tower Section 1
• 1 Pipes Outer Diameter of the Pipe

# Length of the Pipe Segment

Number of Pipes

### Area of Pipes Facing to Wind

• 2 Diaganal Stiffeners Outer Diameter of the Stiffeners =

Length of one Stiffener

#### Area of Pipes Facing to Wind

• 3 Horizontal Stiffeners Outer Diameter of the Stiffeners = Length of one Stiffener

Number of Stiffeners

Reference

### Description 1

• 4 Power Cables

16 mm 0

• 234 m 2 2 0

Results

### Outer Diameter of the Cable

Length of one Cable Segment

Number of Cables

Area of Cables Facing to Wind =

Total Solid Area Facing to Wind = A0 =

Width of the Segment

Height of the Segment

### Area of the Section

#### Solidity Ratio = Ψ = As/A

Figure 7

Figure 8

RM  K q C N As 2 0

For a Wind Load Corresponding to 1m Length of a Tower Section,

0877 mm

Reference

Description 2

# Power Cables

R AW  K A C N AA

Results

### Clause 4

R AW  K A C N AA RAW = Wind Resistance KA = Reduction Factor for Ancillaries CN = Drag Coefficient AA = Reference Area of the Item

# Table 2

### Area of a Unit Weight

Number of Cables Facing Wind = RAW =

Description 3

25 mm 2 0

Results

## R AW  K A C A AA CA = Drag Coefficient

Clause 4

Clause 4

### Clause 4

Diameter of an Antena

• = RAW =

2 m 2 1

Results

Clause 4

Clause 4

Clause 4

# Dimensions of an Antena Area of an Antena

#### Number of Antenae

• = RAW =

Reference

90 m 2 0

Results

Clause 5

Survival Conditions

• r a V 2

W k = Meam Wind Pressure ρa = Density of Air Vz = Effective Wind Speed 3 1

12 kg/m

Clause 5

• 14 m/s kN/m2

12 kg/m

14 m/s 2 2

52 kN/m

12 kg/m

### ρa = Vz = Wk = 0

• 95 Survival to Oparational ratio

Clause 5

## Reference

• 95 m/s kN/m2

12 kg/m

95 m/s 2 1

75 kN/m

The Wind Forces for Survival and Operational Conditions can be Calculated by Multiplying these Wind Pressure Values by the Wind Resistance Values of Each Type of Components

Description

Results

## Uniformly Distributed Loads Wind Loads on:

#### Operation Survival

Section 1-1 Section 1-2 Section 2 Section 3 Section 4 Section 5 Data Cables

### Point Loads Wind Loads on Antennae 6 GSM Antennae 2 0

• 6m Diameter MW Antennae

### Operation Survival kN kN 4

The tower has been analyzed fro operational canditions

TANTRI MARINE ENGINEERING COMPANY Design and Consultation Department No

## Kelaniya

• - +94777324380 E-mail
• - [email protected]

#### Performed by

TOWER SPECIFICATION Tower type Natulre of support Overall height Number of sections

Project

### For Zone

180 Kmph

#### Relative Hourly Mean Wind speed Vb = 25 m/s Vb Sa

Altitude factor Cl 3

• 4 : S a = 1 + 0
• 001 D'When D'is 100m

### Direction factor Cl 3

5 : S d'1

• 0 Seasonal factor Cl 3
• 6 & Annex E : S s'1

### Survival

#### S 0 = S c'(1 + S h) Where S c': Fetch Factor = 1

• 3 S h : Topography Factor = 0

6 (Cl 3

• 4 & Annex H) 2

Vs 25 x 1

59 x V z

78 kN/m2

### For Servisibility Condition Vk

V b x Sa x So 17

W k operational =

59 x 40

946 kN/m2

Dia(m) 0

# W k KN/m2 Force /kN/m Perational Survival OperationalSurvival 0

ANTENNA ANCILLARIES R AW = C A K A A A At height/(m) Nos 36

Wk kN/m2 Antenne Dead(kN) Operational Surevival Area (m2) K A 180 1

# Antenne

#### Force / Antenne kN

BxH (Kg) (kN) Operational Surevival Area/(m2) 6

Anciliary Components ( Data Cable ) AS Structural Pipe/Rod Length Area Dia No Dia

• (m) (m2) (m) Section-01 2
• 0267 (Above32m) 2

## Width (m)

• 0344 Section-02
• 0369 Section-03
• 0516 Section-04
• 0549 Section-05

# Solidity Ratio y

Height (m)

OperationalSurevival 0

Area m2

• 0344 Section-01 (Bellow32m)

# YPlatform Stability Circle

X Platform

## LF LF Cos 60

LF Sin 60 Figure 8

• 2 : Checking the side most likely to

### Center of Gravity Without Concrete Weight Force Tower+Head Load 1533 Kg 15,034

Tr M (J) 7

52 E+03

Shelter 0 Kg Tower Frame 289 Kg 2 Front Poly Pts(Arm) 576 Kg 2 Rear Poly Pts(Arm) 0 Kg Base Struc Wt 3045 Kg Wt of Accessories 0 Kg Resultant Wt 5443 Kg

• 0 2,835 5,651 0 29,871 0 53,391

E+00 E+02 E+04 E+00 E+04 E+00 E+04

Center of Gravity of the system with Concrete Weight Force Y Tr M (J) Tower+Head Load 1533 Kg 15,034 0

• 52 E+03 Shelter 0 Kg 0 4
• 00 E+00 Tower Frame 289 Kg 2,835 0
• 51 E+02 2 Rear Poly Pts(Arm) 0 Kg 0 6
• 00 E+00 Concrete @ A 3240 Kg 31,784 6
• 91 E+05 Concrete @ B 3240 Kg 31,784 0
• 00 E+00 Concrete @ C 3240 Kg 31,784
• 54 E+04 2 Front Poly Pts(Arm) 576 Kg 5,651
• 70 E+04 Base Struc Wt 3045 Kg 29,871 1
• 08 E+04 Wt of Accessories 0 Kg 0 0
• 00 E+00 Resultant Wt 15163 Kg 148,744 0

38 E+05

### Turning Moment = WF Per Segment x No of Segments x Elevation

Wind Force effect Area Repetition Elevation of Segments m GSM Antennae 0

• 675 m2 1 30
• 2 MW Dishes 1
• 131 m2 1 28
• 00 Section 1 0
• 014 m2 14 26
• 25 Section 1
• 020 m2 14 24
• 00 Section 2 0
• 037 m2 14 20
• 75 Section 3 0
• 052 m2 14 15
• 25 Section 4 0
• 055 m2 14 9
• 75 Section 5 0
• 059 m2 21 4
• 25 Description

WF per seg Turning Moment KN KNm 1

# Total Wind Turning Moment = Total Wt of the System = Leverage Required

• 29 KNm 149 KN Total Wind Turning Moment / Total Wt of the System 2

# (Center of gravity of system with concrete Blocks) (Length of Guy Arm)

• -1{ ( L'x Sin 60) / (Y platform + Lx Cos60)} 5

68 Degrees

• -1{ ( X Platform) / (Y platform

- Y CG)} 2

71 Degrees

6 1x1 1

# A legs leverage =

C legs leverage = = Radius of Stability = Circle

39 A B C

(Y CG + L'x Cos 60) 3

### (Y platform

- Y CG) 5

• 3240 Kg 3240 Kg 3240 Kg

Concrete Blocks Required W

391 KN 0

6m 72 KN

C 186 KN

## Taking Moments about A Over turning moment =

186 x 9

• 1674 KNm W x ( 6

- Y CG )

Moment of self Weight = = Resultant Moment

Over turning moment

• - Moment of self Weight
• = Required Weight

### Resultant Moment / ( 6 + 3)

Taking moment Over about Turning Moment Moment of Self Wt KNm KNm about A 1674 278

Resultant Moment KNm 1395

120 105 85

110 95 75

• 180 160 120

856169 0

Height Varies

Drag Coeff C NC

## Wk kN/m2

Prof kN/m

with Uni cable With Solidity W k * RM F1 Balance

Cable A with shy A no shy

#### Without Solidity Tot F

25 m 20

75 m 15

• 75 m over lap 4

## Lightening Arrestor 0

• 030 m2 Aviation Lamp 0

#### Prof our 1260

00 6019

54 1940

00 5128

00 2460

80 2400

28 3029

85 2822

28 2274

• 3240 2400 1620
• 6480 4800 3240

0 16000

• 6480 6480 12000

### Checking for Bending and Shearing and deflection of Goose neck due to Uplift

No of Beams Weled Weld Thickness

## UB200x150 UB200x150 UB150x150 UB150x150

• 006 m Weld Len County 0

150 m 0

395 m 0

250 m 0

4 2 3 2

# Total Weld Length Throught thickness factor

### Effective Length

Distance Between Pivot Pts

## Forces On Cantelevered Arm Weight Force Self Wt 180 Kg

• -1766 Guy Top 8449 2nd 8272 3 rd 7952 Guy Bottom 7209 Up Lift 30117

# Cos(45) 0

• 021114095 m2 0
• -3002 14963 13616 12095 10064 47737

8580207

608 N/m2

58 N/mm2

00 N/mm2

J J J J J J

600 m 0

791 m 0

750 m 0

348 m 2

Up lift

• 30,117 N RB=

210 Gpa

# L Extended

60 E-05

## Max Bending Moment Allowed

39 E+04

Differential Equations EI V(x) 4

EI V(x) 1

# EI V(x)

• infinite

EI V(L) 2

## Deflection V(0)

From eq'n 5 V(0)

From eq'n 4 V(0) 1

### From eq'n 3

#### Form Equation 2 V(L) 3

EI V(L) 3

295,445

• 10E+11 Pa (N/m2)

Neutral Axis

### Neutral Axis

#### Moment of Inertia of the Flange

• (75 x 53 )/12 + (75 x 5) x 72

For two flanges Moment of Inertia of web and Plates

# For three webs Total Moment of inertia of Lifting I beam

1971875

• 3943750 5 x 1403 / 12

1143333

3430000

• 7373750 mm 7
• 37375E-06 m

c1 From 7

295,445

-886335

Sh Force

EI V(x) 2

295,445

-886,335

147,723

-886,335

# Deflection

295,445

Table 1 Deflection Parameter Table

0 1 2 3

# X from end Deflection mm SF / N 0

• 00 295,445 0
• 65 295,445 0
• 57 295,445 0

71 295,445

## BM 886,335 864,177 842,019 819,860

Safe Safe Safe Safe

• 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
• 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445 295,445

Deflection /(mm)

• 797,702 775,544 753,385 731,227 709,068 686,910 664,752 642,593 620,435 598,276 576,118 553,960 531,801 509,643 487,484 465,326 443,168 421,009 398,851 376,693 354,534 332,376 310,217 288,059 265,901 243,742 221,584 199,425 177,267 155,109 132,950 110,792 88,634 66,475 44,317 22,158 0

53 10,000

Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe Safe

Deflection /(mm) 0

• 3 Deflection Diagram

Bending Moment Diagram 1,000,000 800,000 600,000 400,000 200,000 0 1

• 4 Bending moment Diagram

### Shear Force Diagram /( N ) 350,000 300,000 250,000 200,000 150,000 100,000 50,000 0 1

• 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
• 5 Shear Force Diagram

5 6 7 8

09E-06 5

98E-06 6

84E-06 7

#### Neutral Axis tw

Componet Material Type Twr Pipes Stiffner Flat Iron Pivot Shaft GuyArm

## Guy Stuff

#### Turn Buckle Shacles Gassete Plates

Twr Lock

Lock Pin Verti Screw

Stress Yield(N/mm2) UTenStr st 52 335 1020 C Steel 200

## Tensile Shear 523 380

Material

• ? (MPa)
• ? (MPa)

? Yield strength Ultimate strength first carbon nanotube ropes

? 3,600 Structural steel ASTM A36 steel 250 400 Steel,

### API 5L X65 (Fikret Mert Veral) 448 531 Steel,

high strength alloy ASTM A514 690 760 Steel,

prestressing strands 1,650 1,860[citation needed] Steel Wire Steel (AISI 1,060 0

• 6% carbon)2,200-2,482[1] Piano wire High density polyethylene (HDPE) 26-33 37 Polypropylene Dec-43 19
• 7-80 Stainless steel AISI 302
• - Cold-rolled 520 860 Cast iron 4

# ASTM A-48 130 200 Titanium alloy (6% Al,

• 4% V) 830 900 Aluminium alloy 2014-T6[citation needed]400 455 Copper 99
• 9% Cu 70 220 Cupronickel 10% Ni,

balance 130 Cu 350 Brass 200+ 550 Tungsten 1,510 Glass 50 (in compression)

# Bending

Buckling

E-Glass N/A 3,450 S-Glass N/A 4,710 Basalt fiber N/A 4,840 Marble N/A 15 Concrete N/A 3 Carbon Fiber N/A 5,650 Human hair 380 Spider silk (See note below) 1,000 Silkworm silk 500 Aramid (Kevlar or Twaron) 3,620 UHMWPE 23 46 UHMWPE fibers[2][3] (Dyneema or Spectra) 2,300-3,500 Vectran 2,850-3,340 Polybenzoxazole (Zylon) 5,800 Pine Wood (parallel to grain) 40 Bone (limb) 104-121 130 Nylon,

type 6/6 45 75 Rubber 15 Boron N/A 3,100 Silicon,

monocrystalline (m-Si) N/A 7,000 Silicon carbide (SiC) N/A 3,440 Sapphire (Al2O3) N/A 1,900 Carbon nanotube (see note below) N/A 62,000 Carbon nanotube composites N/A 1,200[4]

Properties of Steel % % H_b UNS Number Processing Method Yield Strength Tensile MPa Strength Elongation MPa Reduction in 2 in

in Brinell AreaHardness G10100 Hot Rolled 179 324 28 50 95 G10100 Cold Drawn 303 365 20 40 105 G10150 Hot Rolled 186 345 28 50 101 G10150 Cold Drawn 324 386 18 40 111 G10180 Hot Rolled 220 400 25 50 116 G10180 Cold Drawn 372 441 15 40 126 G10350 Hot Rolled 269 496 18 40 143 G10350 Cold Drawn 462 551 12 35 163 G10350 Drawn 800 F 558 758 18 51 220 G10350 Drawn 1000 F 496 710 23 59 201 G10350 Drawn 1200 F 427 627 27 66 180 G10400 Hot Rolled 289 524 18 40 149 G10400 Cold Drawn 489 586 12 35 170 G10400 Drawn 1000 F 593 779 23 62 235 G10500 Hot Rolled 338 620 15 35 179 G10500 Cold Drawn 579 689 10 30 197 G10500 Drawn 600 F 1240 1516 10 30 450 G10500 Drawn 900 F 896 1068 18 55 310 G10500 Drawn 1200 F 551 723 28 65 210 G15216 Hot Rolled,

### Annealed 558 689 25 57 192 G41300 Hot Rolled,

Annealed 413 620 30 45 183 G41300 Cold Drawn,

Annealed 599 675 21 52 201 G41300 Drawn 1000 F 916 1006 17 60 293 G41400 Hot Rolled,

#### Annealed 434 620 27 58 187

G41400 G41400 G43400 G43400 G43400 G43400 G46200 G46200 G61500 G61500 G87400 G87400 G87400 G92550 G92550

#### Cold Drawn,

Annealed 620 Drawn 1000 F 903 Hot Rolled,

Annealed 475 Cold Drawn,

# Annealed 400 Drawn 1000 F 909 Hot Rolled,

### Annealed 441 Cold Drawn,

Annealed 661 Drawn 1000 F 889 Hot Rolled,

#### Annealed 537 Drawn 1000 F 1102

• 703 1054 696 765 1791 1254 827 896 627 1068 655 737 1047 792 1240
• 18 16 21 16 12 15 22 23 22 15 25 17 15 22 15
• 50 45 45 42 43 40 55 66 53 44 55 48 44 45 32
• 223 302 207 223 498 363 248 256 183 302 190 223 302 223 352

• (g/cm³)
• ? Density 1

# Density

Manuf Safty Lim

BS 8100- Part 4 Mean Site Wind Speed Vs = VsxSbxSdxSc Where 3 sec Gust wind speed

For Zone

# Relative Hourly Mean Wind speed Vb = 26

25 m/s Sa

## Altitude factor Cl 3

• 4 : S a = 1 + 0
• 001 D'When Dis 100m
• 1 Direction factor Cl 3

5 : S d'1

• 0 Seasonal factor Cl 3
• 6 & Annex E : S s'1

VsxSoxgn

### Terrain Factor

Country Terrain

S 0 = S c'(1 + S h) Where S c': Fetch Factor = 1

• 3 S h : Topography Factor = 0

6 (Cl 3

• 4 & Annex H) S0 =

180 Kmph

Wind Pressure =

59 x V z

• 3065 N/m2 3

06 kN/m2

For Servisibility Condition Vk

### V b x Sa x So 26

25 x 60

W k operational =

59 x 40

• 04 2 2128 N/m2 2

128 kN/m2

R AW = C N K A A A Sin 2 q CN For Power cables CN Option1 0

• 6 Option2 2

# W k KN/m2 Force /kN/m R AW Perational SurvivalOperational Survival 0

### ANTENNA ANCILLARIES R AW = C A K A A A MW Dishes At height/(m) Nos 26

Wk kN/m2 Antenne Force/Antennae kN KA CA R AW Wt Dead(kN) OperationalSurevival Area (m2) Operational Survival 1

2 180 1

R AW = C A K A A A CA

Cellular Antennas ( GSM ) At Height (m) 30

# Wk kN/m2

### Antenne K A

BxH (Kg) (kN) OperationalSurevival Area/(m2) 3

Force/Antenne kN R AW Operational Surevival 1

Anciliary Components Structural components ( Data Cable ) AS AA Structural Pipe/Rod Length Area Dia No Length Area m2 No Dia

• (m) (m2) (m) (m) Section-01 2
• 0267 (Above32m) 2
• 0344 Section-01 (Bellow32m)
• 0344 Section-02
• 0369 Section-03

### Section-05

#### Operational Wk Pipes kN/m2 kN

• 0560 Section-04

#### Width Height Solidity Drag (m) (m) Ratio Coeff C NC b h y

Force Cables WF kN kN

For Zone

# Relative Hourly Mean Wind speed

### Altitude factor

• 4 : S a = 1 + 0
• 001 D'When D'is 100m Sa
• 1 Direction factor Cl 3

5 : S d'1

• 0 Seasonal factor Cl 3
• 6 & Annex E : S s'1

VsxSoxgn

Terrain Factor

### Country Terrain

#### S 0 = S c'(1 + S h) Where S c': Fetch Factor = 1

• 3 S h : Topography Factor = 0

6 (Cl 3

• 4 & Annex H) S0 =

180 Kmph

59 x V z

• 4843 N/m2 4

84 kN/m2

59 x 40

3364 N/m2

364 kN/m2

• 6 Option2 2

### ANTENNA ANCILLARIES R AW = C A K A A A MW Dishes At height/(m) Nos 36

Wk kN/m2 Antenne Force/Antennae kN KA CA R AW Wt Dead(kN) OperationalSurevival Area (m2) Operational Survival 1

2 180 1

## R AW = C A K A A A CA

Cellular Antennas ( GSM ) At Height (m) 37

# Wk kN/m2

## Antenne K A

### Force/Antenne kN R AW Operational Surevival 1

#### Structural components AS Structural Pipe/Rod Length No Dia

• (m) Section-01 2
• 4000 (Above32m) 2

# Section-01 (Bellow32m)

Anciliary Components ( Data Cable ) AA Area Dia No Length Area m2 (m2) (m) (m) 0

Width Height Solidity Drag (m) (m) Ratio Coeff C NC b h y

• 0463 Section-02
• 0489 Section-03
• 0603 Section-05
• 0560 Section-04

# X Platform YC

• q Guylo

YTWR Y=0

### LF LF Cos 60

LF Sin 60 Figure 8

• 2 : Checking the side most likely to fail

Center of Gravity Without Concrete Weight Tower+Head Load 1533 Kg Shelter 0 Kg Tower Frame 289 Kg 2 Front Poly Pts(Arm) 576 Kg 2 Rear Poly Pts(Arm) 0 Kg Base Struc Wt3045 Kg Wt of Accessories0 Kg Resultant Wt 5443 Kg

Force 15,034 0 2,835 5,651 0 29,871 0 53,391

# Tr M (J) 7

52 E+03 0

00 E+00 8

51 E+02

70 E+04 0

00 E+00 5

08 E+04 0

00 E+00 4

22 E+04

Center of Gravity of the system with Concrete Weight Force Y Tr M (J) Tower+Head Load 1533 Kg 15,034 0

• 52 E+03 Shelter 0 Kg 0 4
• 00 E+00 Tower Frame 289 Kg 2,835 0
• 51 E+02 2 Rear Poly Pts(Arm) 0 Kg 0 6
• 00 E+00 2 Nos Concrete @ A7000 Kg 68,670 6
• 12 E+05 2 Nos Concrete @ B9200 Kg 90,252 0
• 00 E+00 2 Nos Concrete @ C7600 Kg 74,556
• 24 E+05 2 Front Poly Pts(Arm) 576 Kg 5,651
• 70 E+04 Base Struc Wt3045 Kg 29,871 1
• 08 E+04 Wt of Accessories0 Kg 0 0
• 00 E+00 Resultant Wt 29243 Kg 286,869 0

31 E+05

# Turning Moment = WF Per Segment x No of Segments x Elevation

## Total Wind Turning Moment = 1705

• 52 KNm Total Wt of the System =

Leverage Required =

#### Total Wind Turning Moment / Total Wt of the System 5

Y Platform = X Platform =

## (Length of Guy Arm)

• -1{ ( L'x Sin 60) / (Y platform + Lx Cos60)}

68 Degrees

#### (Center of gravity of system with concrete Blocks)

• -1{ ( X Platform) / (Y platform

- Y CG)}

71 Degrees

X Platform / Sin

Comparisan to select the side Most likely to fail Side Leverage

• 03 Failure A legs leverage

- Y CG) 5

70 Failure

C legs leverage

# (Y CG + L'x Cos 60)

80 Failure

Concrete Blocks Required W 53

391 KN 0

790 m Y CG

6 72 KN

C 186 KN

Taking Moments about A Over turning moment= = Moment of self Weight = = Resultant Moment = = Required Weight

• 186 x 9 1674 KNm W x ( 6
• - Y CG ) 278
• 15 Over turning moment
• - Moment of self Weight 1395
• 85 Resultant Moment / ( 6 + 3) 155

Taking moment Overabout Turning Moment Moment of Self WtResultant Moment Required Wt @ KNm KNm KNm KN about A 1674 278

15 1395

• 09 C about C

4 Over Lap

A (Near Goose Neck)

68 Side

96 Goose

64 Legs

23800 0

Velocity

Section 1

# Perational

### Section 3

#### Section 4

Section 5

• 0 A 3500 A 3500 B 4600 B 4600 C (Arm 1) 3800 C (Arm 2) 3800 23
• 8 GSM Antennae 37
• 2 MW Dishes 36
• 00 Section 1 32
• 65 Section 1
• 65 Section 2 25
• 55 Section 3 18
• 45 Section 4 11
• 35 Section 5 4

mm mm mm Nos Nos Kg Kg Kg Kg Kg Kg Ton m m m m m m m m

GSM Antennae 13

• 2 MW Dishes 8
• 294 Section 1 0
• 558 Section 1
• 534 Section 2 9
• 262 Section 3 9
• 567 Section 4 9
• 640 Section 512

## kN kN kN kN kN kN kN kN

V k = V b x Sa x So

08 0 75

504 3363

Survival

Ratio 1

• nnae kN
• revival

# Force Cables WF kN kN

• #### #### ####
• #### over lap ####

6 1x1 1

• 3240 2400 1620
• 6480 4800 3240
• 0 16000 3500 Kg 3500 Kg 4600 Kg 4600 Kg 3800 Kg 3800 Kg

Wind Force effect Description Area of Segm Operationl GSM Antennae 0

• 675 m2 Zone

# Post Desaster Neutral Structure In Sri Lanka1

• 2 MW Dishes 1

131 m2 1

• 180 Section 1
• 160 Section 1
• 2 120 Section 2

020 m2 0

Section 3

Section 4

# Section 5

60 4843

Sa Altitude Factor Ss VsxSbxSdxSc Sc Sh Sd S 0 = S c'(1 + S h) Gamma Partial SF Vz=VsxSoxgn N/m2 kN/m2

### Cable s'A with shy A no shy

#### Prof Has Considered 16mm Rods 0

ce effect Survival Repetition WF per seg Elevation WF n Seg Turning Moment of Segments KN m KN KNm 1 13

4252 37

425 503

2936 36

294 298

3143 32

21 16 0

5968 32

534 311

27 18 0

5218 25

262 236

64 18 0

5390 18

567 176

52 18 0

5431 11

640 109

42 21 0

45 1705

52 KmPH

494742 5

247771 1

367034 2

596099 4

539735 4

68949 4

725192 7

200 x 3

200 1,928

## Force on beam for the criticle case = =

89 N 87

374199 Ton

### Load on One Beam

Number of points the beam is Suppoted from bottom Load on Beam

24,761 Kg

374 Ton 43

687 Ton

# Gravitational Acc

812 m/s2

Analysis for Bending failure Section Moduli Steel Density

310 N/mm2

3 E+08 Pa

00 Kg/m3

000 m tf

## Thickness t 0

Unit length Weight Beam weight

0 Kg/m 306

• 6 I beam Cross section
• 7 Free body Diagram I Beam

# Shearing stress X sec Area Allowed Max S Force

UDL of dead load On One Beam Total weight = On one Beam = No of Segments = Linear weight Intensity Per Segment =

• 300 N/mm2 0

0069 m3 2

074 E+06 N

• 3,265 Kg 1,633 Kg 40 40

81 Kgs/m

Table 3

• 2 Beam Property input table X from end Seg Wt/ (Kg) XsecArea 0 0

00 m 31

00691 1 0

15 m 31

00691 2 0

30 m 31

00691 3 0

45 m 31

00691 4 0

60 m 31

00691 5 0

75 m 31

00691 6 0

90 m 31

00691 7 1

05 m 31

00691 8 1

20 m 31

00691 9 1

35 m 31

00691 10 1

50 m 31

00691 11 1

65 m 31

00691 12 1

80 m 31

00691 13 1

95 m 31

00691 14 2

10 m 31

00691 15 2

25 m 31

01171 16 2

40 m 31

01171 17 2

55 m 31

01171 18 2

70 m 1389

01171 19 2

85 m 1389

01171 20 3

00 m 1389

01171 21 3

15 m 1389

01171 22 3

30 m 1389

#### Moment of Inertia of the beam Section H W MI Web MI Fla 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 2

88 E-08 0

45 E-06 5

76 E-08 0

45 E-06 5

76 E-08 0

45 E-06 5

76 E-08 0

45 E-06 5

76 E-08 0

45 E-06 5

76 E-08 0

45 E-06 5

76 E-08 0

45 E-06 5

76 E-08 0

45 E-06 5

76 E-08

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 2

12 E-05 4

24 E-05 4

24 E-05 4

24 E-05 4

24 E-05 4

24 E-05 4

24 E-05 4

24 E-05 4

24 E-05

• 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

29 1389

00 10748

01171 0

01171 0

01171 0

00691 0

00691 0

00691 0

00691 0

00691 0

00691 0

00691 0

00691 0

00691 0

00691 0

00691 0

00691 0

00691 0

00691 0

Table 3

• 3 Bending moment at diastance x x Mx BM Allowed S Factor 0

00 m 0 0

• -9,056 148,559 16
• -18,007 148,559 8
• -26,851 148,559 5
• -35,591 148,559 4
• -44,224 148,559 3
• -52,752 148,559 2
• -61,174 148,559 2
• -69,490 148,559 2
• -77,701 148,559 1
• -85,806 148,559 1
• -93,806 148,559 1
• -101,699 148,559 1
• -109,487 148,559 1
• -117,170 148,559 1
• -124,747 148,559 1
• -132,218 280,217 2
• -139,583 280,217 2
• -146,843 280,217 1
• -151,998 280,217 1
• -155,049 280,217 1
• -155,995 280,217 1
• -154,838 280,217 1
• -151,575 280,217 1
• -146,209 280,217 1
• -138,738 280,217 2
• -131,161 280,217 2
• -123,478 148,559 1
• -115,690 148,559 1
• -107,797 14
• ## Calculation

### IHT400 Calculation

PDF Basic Manual for Calculation of the Estimated Human Exposure nite go jp en chem ghs risk consumer guidance ap1 e pdf PDF Instructions for calculating capital requirements for bank default fund

## Calculation

### IHT400 Calculation

PDF Basic Manual for Calculation of the Estimated Human Exposure nite go jp en chem ghs risk consumer guidance ap1 e pdf PDF Instructions for calculating capital requirements for bank default fund

## Calculator Priza de Pamant Excel 3003

### PLANUL DE MANAGEMENT AL RISCULUI LA - Ministerul Mediului

PDF GHID DE BUNĂ PRACTICĂ PENTRU PROIECTAREA MDRAPmdrap ro consutrctii ancheta publica ghid proiectarea instalatii iluminat pdf PDF Catalogul produselor OREGON oregonproducts eu oregonproducts eu site 6 flipbooks CAT RO RO publication pdf PDF

## calculator Project Report

### Mini-project report

PDF Calculator Introduction Requirements Design The StateWORKS stateworks active download Calculator pdf PDF Mini Project Report Computer Science cs northwestern edu ~agupta projects FinalReport pdf PDF A Calculator Project cs appstate

## calculator synopsis

### QMS 001 Business Statistics FALL 2015 - Ryerson University

ing report provides details about the calculator operated on, instructions on using the calculator, and an in depth look at the software written to complete the  The calculator known from Microsoft Windows systems is taken as the application Although the power of the StateWORKS concept only shows up

## calculator techniques 2

### Inductance Calculation Techniques --- Approximations and

engineervincentpardopilien weebly uploads 2 Set calculator to equation mode MODE>5>1 for two variable equation Input the coefficients of a,b and constant c of the first equation 2 = 3 = 6 = Input the coefficients of a,b and constant c of the second equation

## Calculator Techniques for Solving Progression Problems

### Contribution-based Compensation and Appraisal System (CCAS

cengage resource uploads downloads from the Substitution Principle (see Appendix A 1) and simplification techniques Solving a Linear Equation a Original equation Add 6 to each side Divide each side by 3 b Original equation Subtract from each side Subtract 4 from

## Calculator Techniques (Pass無し 131119

### Fisheries United States - US Fish and Wildlife Service

PDF O'FALLON TOWNSIDP HIGH SCHOOL DISTRICT 203 O OTHS oths us cms lib Domain District 20Audit 20FY2017 pdf PDF VakıfBank's yellow illuminates the future vakifbank tr documents finansal Annual

## Calcul_des_pannes_selon_EC3,_Dahmani_lahlou

### etude et dimensionnement d'une hall metallique - Depot

PDF dimensionnement ResearchGate researchgate selon Charpentes metalliques Conception et dimensionnement selon les eurocodes pdf PDF master (lmd) formation c m s1+s2+s3 Faculté du Génie de la fgc ummto dz MASTER LMD FORMATION

<