PDF- beggs and brill pressure drop -Evaluation of Models to Predict Liquid Loading in Gas wells - NTNU - Calculation of Pressure Traverse Using Beggs and Brill

tion of Pressure Traverse Using Beggs and Brill

Description

### Calculation of Pressure Drop for a hilly terrain pipeline using Beggs & Brill correlation By

Oba Fred Ajubolaka G2011/MENG/PNG/FT/846

& Abiodun Benjamin Odunayo G2010/MENG/PNG/FT/804

MULTIPHASE FLOW IN PIPES

DEPARTMENT OF PETROLEUM & GAS ENGINEERING UNIVERSITY OF PORT HARCOURT AUGUST,

Project Data: q

•  7140STB/ D
• qg  25

7mmcf / D

•  g  0
• 70   0
• 83  40 API 0

P  425psia Ave

## ,T  90 F  550 R

• d  12in

#### Divide Pipeline into two sections Section 1: Rises 300ft

• in one mile(5280 ft
• ) Section 2: Drops 300ft
• in 3000ft

Solution 1

Section 1 Estimate Average Pressure,P let,

P  30 psi P  P  P  425 30 / 2  410psia 2

Determine fluid properties from relevant correlation at 410psia and 90°F Determine Rs from:

•  P 100
• 0125  API  Rs   g   18 100
• 00091t 
•  1
• 2048  
• t=90°F ,

Rs  0

70( 138

• 1468)  96
• 70scf / STB

## Determine Bo from the correlation below:    Bo  0

9759 0

• 00012 R s    

70scf/STB,

• t= 90°F
• 0457Bbl/STB
•     g  1
• 25t    o   

# Z-Factor determination using standing & katz correlation Ppc66715

0 37

• 5 g g Ppc503

75 psia

5 g g

T pc394

28R P

410  0

550  1

4 0 3 9 4

• z = ƒ(Ppr,

Tpr) = 0

## µo (d) Using the following correlations: 

•  1 0x  1

0324

• 02023  g
•    1 0
• 7 1 5Rs  1 0 00
• 515   b o   od
• b  5
• 4 4Rs  1 5 00
• t = 90°F,
• 70scf/stb and  g  0

#### Determine gas viscosity,µg (e) First we determine ρg 2

• g 

7  0

• 70 410  1
• 52Ibm / ft 3 0

93 550

Using Lee et al Correlation 

• g 104 K

 Y    g    X  62

• 4       

M g  28

•  2 0
• 2 8Ib m / Ib m  mo l

4  0

• 0 2M g T 1
• 5 K 2 0 9 1 9M g  T   1 1 0
•  9 8 6 X  3
• 5     0
• 0 1M g  5
• 5 0 T   Y  2

4  0

2 X  1

•  g 0

01155cp

## Determine surface tension σo and Bg (f) From the plot of Baker and Swerdloff at 40°API 

•  28dynes/ cm

Correction factor of 70% ,

### σo will be:  o  2 8d yn es 7 0%  2 8 0

• 7 0  1 9d yn es/ cm

Bg is determined from z-factor,

average pressure and temperature: 0

0283zT 0

0283 0

• 93 550 Bg    0
• 0353ft3 / scf p 410
• 0 Determine flowrates & Densities (g)

Gas density,

• g 

7  0

• 70 410   1
• 52Ibm / ft3 0

93 550

### Oil density,

•   o
• 350 o  0
• 076Rs g 5

Oil flowrate,

• q B  5
• q  o o o 86400
•  50,36Ibm / ft3
• 4852ft 3 / s

Gas flowrate,

q  q B  g R o s' g  q   10

• 218ft 3 / s'g 86400
• 0 Determine superficial velocities Superficial velocity of liquid:

#### Vsl 

• qo 4qo 4  0
• 4852    0
• 618ft / s'Ap   12 d 2

# Vsg 

4 1 0

•   12
•  1 3
• 0 0 9ft / s

Mixture velocity:

### Vm  Vsl  Vsg  0

61813

009 13

627ft / s

• 0 Determine flow pattern No slip liquid holdup,

#### Froude Number,

• 618   sl   0

2 Vm 1 3

• 6 2 72 N    5
• 7 7 Fr 3 2
• 1 7 41 gd

Liquid Velocity Number,

•  N  1
• 938V  o lv sl    o
•    
• 36    1

9380

• 618 19

6  

# Modified Flow pattern equations:

• 302  3160

04540

• 302  124

### L  0

• 000925 2

468  1

• l L3  0

101

452  8

• 91 l'L4  0

56

738  5

• 59108 l'2

516  1

Flow Pattern Since,

• l  0

0 1 L',

• 2  N Fr  L3 Flow pattern is Transition: transition pattern is between segregated and intermittent flow pattern
• 0 Determine HL for Segregated & Intermittent flow patterns Segregated Pattern Calculation: ab

9800

04540

• 4846 l'H 0    0

188 L'0

• 0868 N 5

57 Fr

300ft ϴ1

ϴ2 3000ft

• 1 Schematic of the Pipeline as it rises and drops  300    3
• 25 5280  
• 1  tan1
•  300    5
• 71 3000  
•  2  tan1

# Segregated HL Determination (contd) H

L1

### L0

  3       1

• 0  c' sin 1
• 81  0

3 3 3sin 1

• 81     f g h  C  1
• 0  l ln e N N  Fr l'lv   e  0
• 0 1 1 f  3
• 7680 g  3
• 5390 h  1
• 6140  c' 5
• 5 2 3   1

5 6 1 H

L 0 

•   0

1 8 8 1

5 6 1 0

2 9 3 5

# Determine HL for Intermittent flow patterns 

L Nc Fr

• 8 450

0 45 40

• 5351   0
• 1 56 7 5

7 70

### L 0 

#### L 1 int ermitte nt

L 0 

•  f g  h C  1
• 0  L lne N N  L'Lv Fr   e  2
• 9 60 f  0
• 3050 g  0
• 4473 h  0
• 0978  c' 0
• 1 21 6   1
• 0 12 4 H H   0
• 1 56 7 1
• 0 12 4 0
• 1 59 L'1 int er

# L 0 

## HL for Transitional flow pattern Determine,

### A from: N 3  N Fr 8

9 1 5

• 7 7 A  N3  N 2 8

9 1 1

• 9 1 A  0

4 4 8 6 H

L 1 trans

L 1 trans

•  1  AH

## L 1 Int

•  0
• 4 4 8 60
• 2 9 3 5  1 
• 4 4 8 60
• 1 5 9  0

2 1 9 3

• 0 Determine Actual & Non slip denties s  LH
• 1  H  L
•  s' 5 0

3 60

• 2 1 9 3  1
• 5 21  0
• 2 1 9 3  s' 1 2
• 2 3Ib m / ft 3

 ns   L' L'  g 1   L

•  ns  5 0

3 60

• 0 4 5 4  1
• 5 21  0
• 0 4 5 4  ns  3
• 7 4Ib m / ft 3
• 0 Determine the friction factor,

Determine Nre

• and ƒn: N
•  1488
• n   LL
•  ns V m d
• n  g 1  L
• 1  0
• 0 4 5 4  n  3

5 70

• 0 4 5 4  0
• 0 1 1 5 5  n  0

1 7 3cp N

• 7 41 3
• 6 2 71
•  1488
• 3 8 1 05
• e / d' o
• o o o o6( a ssu mp tio n ) f
•  f N
• / d' 0
• 0 2( mo o d'y
• ch a rt)

### Determine the friction factor,

#### (Contd) Determine y,

• s and ƒtp: y

H   L'1 Trans 

0 4 5 4

• 2 1 9 32
• 0 5 2 3 3
• 1 8 2ln y  0
• 8 7 2 5ln y 2  0
• 0 1 8 5 3ln y 4 s' 0
• 2 4 2 f f f f
•  e s' e0

242  1

• 2 7 4fn  1

2 7 4 0

0 2  0

0 2 5 4 8

• 0 Determine Pressure Gradient  dP   dP   dP   dP              d'L'T  d'L' f  d'L'el  d'L' acc

 dP     0,

•  d'L' acc

 dP     d'L' T

 ftp ns V m 2 2g d'c

•   g sin1  s
•  dP   1 2
• 2 33 2
• 1 7 4sin3
• 2 5 0
• 0 2 5 4 83
• 7 41 3
• 6 2 72     23 2
• 1 7 41 3 2
• 1 7 4  d'L'T  dP     0
• 0 0 6 7 2p si / ft
•  d'L'T
• 0 Determine uphill Pressure Drop,

∆P For an horizontal distance of 0ne mile(5280ft

) Pressure drop will be:  dP  psi P     L' 0

• 00672  5280ft
•  dL T P  35

Section 2 of Pipeline Fluid properties have been determined at average Pressure of 410psia and Temperature of 90°F

## So we continue to with these properties for downhill calculations

 We shall proceed to determining the Liquid holdups for segregated and intermittent flow patterns and there after determine the transition holdup

 From that point we can determine the two phase Friction factor and move on to compute the pressure drop 

Determine Liquid Holdup for Segregated flow pattern H

L  2 se g

## L 0 

  300   2  ta n1    5

L 0 

•  3000  0

 f g Nh  c' 1   L'ln e N  L'Lv Fr   e  4

• 7 0 0f  0
• 3692 g  0
• 1 2 4 4 h  0
• 5056 c' 1
• 7 7 0 6     1
• 0  c' sin1
• 8 2   0
• 3 3 3sin3 1
• 8 2      0
• 6 8 7 4 H H

L 0 

•    0

1 8 8 0

6 8 7 4

1 2 9 2

### We have already determined Holdup for Intermittent flow pattern,

HL(0) = 0

• 1567 in the uphill segment of pipeline c' 1
• 7706 and is the same for both segregated and intermittent flow patterns in downhill
•   0

L  2 int

1567 0

6874 0

## L 0 

     2 H L Trans  0

•  

 H L' Trans  AH L' seg  1  AH L' int

• 2 2 2 H L' Trans  0
• 44860
• 1292  1  0
• 44860

1077

#### Determine actual density of fluid on downhill   H s

• 1  H  L
•   50

360

• 1173  1
• 521  0

1173 s

•   7
• 25Ibm / ft 3 s

#### Determine 2-phase friction factor    4

• 38105  already det er min ed  Re ln y   s  0

0523 3

• 182 ln y  0
• 8725ln y     e / d' 0
• 00006 smooth pipe s' 0
• 4699   ftp fn  f N ,e / d' 0
•  
• H L 2Tr
• e e
•  2  0
• 01853ln y 4
• ftp  1
• 60 f n  1

60 0

02  0

Determine Pressure gradient  dP   dP   dP   dP              dL T  dL  f  dL el  dL acc

2 f  Vm

 dP  tp ns     2 gc d' dL T

•  g sin 5

71

•  dP   0

0323

7413

• 6272 7

2532

• 174 sin5
• 71      232
• 1741 32
• 174  dL T  dP     0

345 0

721 0

• 376psf / ft  0
• 002611psi / ft  dL T

Determine Pressure Drop For an horizontal distance,

L=3,000ft

 dP    L'P    d'L'T p si P  0

• 0 0 2 6 1 1  3,0 0 0ft ft P  0
• 0 0 2 6 1 1  3 0 0 0p si P  7

8 3p si

Total Pressure drop for both uphill & downhill

• P  P T
•  P
• downhill
• P  35

48 7

• 83  43psi T
• P  43psi T

The Beggs and Brill Correlation is iterative

# The calculated pressure drop is not equal to the estimated pressure drop,

the calculated pressure becomes our new estimated pressure drop and process is repeated to achieved the condition where,

estimated pressure drop equals calculated pressure drop

## Calculation Schema for Purchase Orders

### The valuation class - SDM Information Systems

Assignment of Schema group to purg organization • Define Schema Determination • Determine Calculation Schema for Standard Purchase Orders VIII Sep 4, 2008 ➢Schema – Structure that defines the processing steps calculations must be executed maintenance of a quotation, a

### Slug Catcher Manual - futureglobalnetworkcom

coventryperformingarts slug catcher bernardkotlar slug catcher manual pdf futureglobalnetwork slug catcher manual pdf

## CALCULATION TOOL ENGINE-COMPRESSOR.xls

### FanSave 41 User's Manual Energy Savings Calculator for Fan

PDF Turbocharger Compressor Calculations MRT Performance mrtperformance au MRT Technical Turbocharger Compressor Calculations pdf PDF Honda Engine Compression Calculatordev kofler it honda engine compression calculator pdf PDF Honda Engine Compression Calculator Software

## Calculations and Tables QRG Slickline

### Report PDF - USGS Publications Warehouse

PDF OPEN HOLE WIRELINE LOGGING Self Learning Module UiO uio no studier emner Open Hole Wireline logging pdf PDF WellCAP® IADC WELL CONTROL ACCREDITATION PROGRAM iadc wp content uploads WCT 2WLS pdf PDF

## Calculations for A-level Chemistry by E.N.Ramsden.pdf

### Chapter 3 Stoichiometry: Calculations with - MSU Chemistry

Calculations in AS A Level Chemistry (Paperback) Jim Clark ISBN 10 0582411270 bit ly pixlchembook4 If you struggle with the calculations side of  Moles, Formulae and Equations Edexcel Advanced GCE in Chemistry (9080) At Advanced Level you will

## Calculation

### IHT400 Calculation

PDF Basic Manual for Calculation of the Estimated Human Exposure nite go jp en chem ghs risk consumer guidance ap1 e pdf PDF Instructions for calculating capital requirements for bank default fund

## Calculation

### IHT400 Calculation

PDF Basic Manual for Calculation of the Estimated Human Exposure nite go jp en chem ghs risk consumer guidance ap1 e pdf PDF Instructions for calculating capital requirements for bank default fund

## Calculation

### IHT400 Calculation

PDF Basic Manual for Calculation of the Estimated Human Exposure nite go jp en chem ghs risk consumer guidance ap1 e pdf PDF Instructions for calculating capital requirements for bank default fund

## Calculator Priza de Pamant Excel 3003

### PLANUL DE MANAGEMENT AL RISCULUI LA - Ministerul Mediului

PDF GHID DE BUNĂ PRACTICĂ PENTRU PROIECTAREA MDRAPmdrap ro consutrctii ancheta publica ghid proiectarea instalatii iluminat pdf PDF Catalogul produselor OREGON oregonproducts eu oregonproducts eu site 6 flipbooks CAT RO RO publication pdf PDF

<